Skip to main content

Assessment and Management of Acute Respiratory Distress in the ICU

  • Chapter
  • First Online:
Surgical Critical Care Therapy

Abstract

Acute respiratory distress is a common reason for ICU admission and is associated with significant morbidity and mortality. Delayed treatment can be catastrophic, whereas prompt and appropriate intervention can positively impact outcome. In this chapter we discuss the pathophysiology of respiratory distress clinicians may encounter in the ICU and management strategies for acute respiratory distress. Even with optimal management, many patients will experience profound morbidity and require prolonged intensive medical support. Long-term considerations must be consistent with the patient’s goals of care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287:345–55.

    Article  Google Scholar 

  2. Wunsch H, Linde-Zwirble WT, Angus DC, et al. The epidemiology of mechanical ventilation use in the United States. Crit Care Med. 2010;38:1947–53.

    Article  Google Scholar 

  3. Unroe M, Kahn JM, Carson SS, Govert JA, Martinu T, Sathy SJ, et al. One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: a cohort study. Ann Intern Med. 2010;153(3):167–75.

    Article  Google Scholar 

  4. Cooke CR. Economics of mechanical ventilation and respiratory failure. Crit Care Clin. 2012;28(1):39–55.

    Article  Google Scholar 

  5. Barnato AE, Albert SM, Angus DC, Lave JR, Degenholtz HB. Disability among elderly survivors of mechanical ventilation. Am J Respir Crit Care Med. 2011;183(8):1037–42.

    Article  Google Scholar 

  6. Cox CE, Carson SS, Lindquist JH, Olsen MK, Govert JA, Chelluri L, Quality of Life After Mechanical Ventilation in the Aged (QOL-MV) Investigators. Differences in one-year health outcomes and resource utilization by definition of prolonged mechanical ventilation: a prospective cohort study. Crit Care. 2007;11(1):R9.

    Article  Google Scholar 

  7. Barjaktarevic I, Wang T. Acute respiratory failure. In: Textbook of critical care, vol. 9. Philadelphia: Elsevier; 2017. p. 33–7.

    Google Scholar 

  8. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.

    Google Scholar 

  9. Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res. 2012;159(4):205–17.

    Article  CAS  Google Scholar 

  10. Álvarez P, Carrasco R, Romero-Dapueto C, Castillo RL. Transfusion-related acute lung injured (TRALI): current concepts. Open Respir Med J. 2015;9:92–6.

    Article  Google Scholar 

  11. Peters AL, Vlaar AP. Redefining transfusion-related acute lung injury: don’t throw the baby out with the bathwater. Transfusion. 2016;56:2384–8.

    Article  Google Scholar 

  12. ATLS Subcommittee, American College of Surgeons’ Committee on Trauma, International ATLS working group. Advanced trauma life support ATLS student course manual. 9th ed. Chicago: American College of Surgeons; 2012.

    Google Scholar 

  13. Tillquist MN, Gabriel RA, Dutton RP, Urman RD. Incidence and risk factors for early postoperative reintubations. J Clin Anesth. 2016;31:80–9.

    Article  Google Scholar 

  14. Hendrikse KA, Gratama JW, Hove W, Rommes JH, Schultz MJ, Spronk PE. Low value of routine chest radiographs in a mixed medical-surgical ICU. Chest. 2007;132(3):823–8.

    Article  Google Scholar 

  15. Lakhal K, Serveaux-Delous M, Lefrant JY, Capdevila X, Jaber S, AzuRéa network for the RadioDay study group. Chest radiographs in 104 French ICUs: current prescription strategies and clinical value (the RadioDay study). Intensive Care Med. 2012;38(11):1787–99.

    Article  Google Scholar 

  16. Ganapathy A, Adhikari NK, Spiegelman J, Scales DC. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;16(2):R68.

    Article  Google Scholar 

  17. Bhattacharya B, Fieber J, Schuster K, Davis K, Maung A. “Occult” rib fractures diagnosed on computed tomography scan only are still a risk factor for solid organ injury. J Emerg Trauma Shock. 2015;8(3):140–3.

    Article  Google Scholar 

  18. Claessens YE, Debray MP, Tubach F, Brun AL, Rammaert B, Hausfater P, et al. Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia. Am J Respir Crit Care Med. 2015;192(8):974–82.

    Article  Google Scholar 

  19. Ambroggio L, Sucharew H, Rattan MS, O’Hara SM, Babcock DS, Clohessy C, et al. Lung ultrasonography: a viable alternative to chest radiography in children with suspected pneumonia? J Pediatr. 2016;176:93–98.e7.

    Article  Google Scholar 

  20. Xia Y, Ying Y, Wang S, Li W, Shen H. Effectiveness of lung ultrasonography for diagnosis of pneumonia in adults: a systematic review and meta-analysis. J Thorac Dis. 2016;8(10):2822–31.

    Article  Google Scholar 

  21. Soubani AO. Noninvasive monitoring of oxygen and carbon dioxide. Am J Emerg Med. 2001;19(2):141–6.

    Article  CAS  Google Scholar 

  22. Gray AJ, Goodacre S, Newby DE, et al. 3CPO Study Investigators. A multicentre randomized controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial. Health Technol Assess. 2009;13:1–106.

    Google Scholar 

  23. Nava S, Gregoretti C, Fanfulla F, et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005;33:2465–70.

    Article  Google Scholar 

  24. Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER study. Respir Care. 2016;61(3):291–9.

    Article  Google Scholar 

  25. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al.; FLORALI Study Group.; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.

    Google Scholar 

  26. Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316(15):1565–74.

    Article  Google Scholar 

  27. Inaba K, Lustenberger T, Recinos G, Georgiou C, Velmahos GC, Brown C, et al. Does size matter? A prospective analysis of 28-32 versus 36-40 French chest tube size in trauma. J Trauma Acute Care Surg. 2012;72(2):422–7.

    Article  Google Scholar 

  28. Filosso PL, Sandri A, Guerrera F, Ferraris A, Marchisio F, Bora G, et al. When size matters: changing opinion in the management of pleural space-the rise of small-bore pleural catheters. J Thorac Dis. 2016;8(7):E503–10.

    Article  Google Scholar 

  29. Battle CE, Evans PA. Predictors of mortality in patients with flail chest: a systematic review. Emerg Med J. 2015;32(12):961–5.

    Article  Google Scholar 

  30. Shulzhenko NO, Zens TJ, Beems MV, Jung HS, O’Rourke AP, Liepert AE, et al. Number of rib fractures thresholds independently predict worse outcomes in older patients with blunt trauma. Surgery. 2016; pii: S0039–6060(16)30699–7.

    Google Scholar 

  31. Brasel KJ, Moore EE, Albrecht RA, deMoya M, Schreiber M, Karmy-Jones R, et al. Western trauma association critical decisions in trauma: management of rib fractures. J Trauma Acute Care Surg. 2017;82(1):200–3.

    Article  Google Scholar 

  32. Hekiert AM, Mick R, Mirza N. Prediction of difficult laryngoscopy: does obesity play a role? Ann Otol Rhinol Laryngol. 2007;116(11):799–804.

    Article  Google Scholar 

  33. Nuckton TJ, Glidden DV, Browner WS, Claman DM. Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep. 2006;29(7):903–8.

    Article  Google Scholar 

  34. Sulser S, Ubmann D, Schlaepfer M, Brueesch M, Goliasch G, Seifert B, et al. C-MAC videolaryngoscope compared with direct laryngoscopy for rapid sequence intubation in an emergency department: a randomised clinical trial. Eur J Anaesthesiol. 2016;33(12):943–8.

    Article  Google Scholar 

  35. Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;11:CD011136.

    PubMed  Google Scholar 

  36. Algie CM, Mahar RK, Tan HB, Wilson G, Mahar PD, Wasiak J. Effectiveness and risks of cricoid pressure during rapid sequence induction for endotracheal intubation. Cochrane Database Syst Rev. 2015;11:CD011656.

    Google Scholar 

  37. Bone RC, Eubanks DH. The basis and basics of mechanical ventilation. Dis Mon. 1991;37(6):321–406.

    Article  CAS  Google Scholar 

  38. Demling RH, Knox JB. Basic concepts of lung function and dysfunction: oxygenation, ventilation, and mechanics. New Horiz. 1993;1(3):362–70.

    CAS  PubMed  Google Scholar 

  39. Versprille A. Basic mechanisms and clinical consequences of cyclic changes in pulmonary blood flow and blood volume during mechanical ventilation. Eur J Anaesthesiol. 1994;11(1):15–23.

    CAS  PubMed  Google Scholar 

  40. Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity: early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med. 1983;309(15):878–83.

    Article  CAS  Google Scholar 

  41. Crapo JD. Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol. 1986;48:721–31.

    Article  CAS  Google Scholar 

  42. Reinhart K, Bloos F, König F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99(3):690–4.

    Article  CAS  Google Scholar 

  43. Brueckl C, Kaestle S, Kerem A, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34(4):453–63.

    Article  CAS  Google Scholar 

  44. Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.

    Article  CAS  Google Scholar 

  45. Sloane PJ, Gee MH, Gottlieb JE, et al. A multicenter registry of patients with acute respiratory distress syndrome: physiology and outcome. Am Rev Respir Dis. 1992;146:419–26.

    Article  CAS  Google Scholar 

  46. Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury: predictors of mortality. Am J Respir Crit Care Med. 1995;152:1818–24.

    Article  CAS  Google Scholar 

  47. Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med. 1998;157:1159–64.

    Article  CAS  Google Scholar 

  48. The Acute Respiratory Distress Syndrome Network, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  49. Dreyfuss D, Saumon G, Hubmayr RD, editors. Ventilator-induced lung injury. New York: Taylor & Francis; 2006.

    Google Scholar 

  50. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.

    Article  Google Scholar 

  51. Varpula T, et al. The effects of ventilatory mode on lung aeration assessed with computer tomography: a randomized controlled study. J Intensive Care Med. 2009;24:122–30.

    Article  Google Scholar 

  52. Frawley PM, Habashi NM. Airway pressure release ventilation: theory and practice. AACN Clin Issues. 2001;12:234–46.

    Article  CAS  Google Scholar 

  53. Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.

    Article  CAS  Google Scholar 

  54. Fan E, et al. Sedation and analgesia usage with airway pressure release and assist-control ventilation for acute lung injury. J Intensive Care Med. 2008;23:376–83.

    Article  Google Scholar 

  55. Walkey AJ, et al. Use of airway pressure release ventilation is associated with a reduced incidence of ventilator-associated pneumonia in patients with pulmonary contusion. J Trauma. 2011;70:E42–7.

    Article  Google Scholar 

  56. Maxwell RA, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–11.

    Article  Google Scholar 

  57. Maung AA, Schuster KM, Kaplan LJ, Ditillo MF, Piper GL, Maerz LL, et al. Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg. 2012;73(2):507–10.

    Article  Google Scholar 

  58. Stawicki SP, Goyal M, Sarani B. High-frequency oscillatory ventilation (HFOV) and airway pressure release ventilation (APRV): a practical guide. J Intensive Care Med. 2009;24(4):215–29.

    Article  CAS  Google Scholar 

  59. Sud S, Sud M, Friedrich JO, Wunsch H, Meade MO, Ferguson ND, et al. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev. 2016;4:CD004085.

    PubMed  Google Scholar 

  60. Bhatt N, Osborn E. Extracorporeal gas exchange: the expanding role of extracorporeal support in respiratory failure. Clin Chest Med. 2016;37(4):765–80.

    Article  Google Scholar 

  61. Tramm R, Ilic D, Davies AR, Pellegrino VA, Romero L, Hodgson C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst Rev. 2015;1:CD010381.

    PubMed  Google Scholar 

  62. Protti A, Chiumello D, Cressoni M, Carlesso E, Mietto C, Berto V, Lazzerini M, Quintel M, Gattinoni L. Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Med. 2009;35:1011–7.

    Article  Google Scholar 

  63. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  Google Scholar 

  64. Hu SL, He HL, Pan C, Liu AR, Liu SQ, Liu L, et al. The effect of prone positioning on mortality in patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(3):R109.

    Article  Google Scholar 

  65. Anifantaki S, Prinianakis G, Vitsaksaki E, et al. Daily interruption of sedative infusions in an adult medical-surgical intensive care unit: randomized controlled trial. J Adv Nurs. 2009;65:1054–60.

    Article  Google Scholar 

  66. de Wit M, Gennings C, Jenvey WI, et al. Randomized trial comparing daily interruption of sedation and nursing-implemented sedation algorithm in medical intensive care unit patients. Crit Care. 2008;12:R70.

    Article  Google Scholar 

  67. Mehta S, Burry L, Martinez-Motta JC, Stewart TE, Hallett D, McDonald E, et al. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial. Crit Care Med. 2008;36(7):2092–9.

    Article  CAS  Google Scholar 

  68. Juern JS. Removing the critically ill patient from mechanical ventilation. Surg Clin North Am. 2012;92(6):1475–83.

    Article  Google Scholar 

  69. Kollef MH, Shapiro SD, Silver P, St John RE, Prentice D, Sauer S, et al. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med. 1997;25(4):567–74.

    Article  CAS  Google Scholar 

  70. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.

    Article  CAS  Google Scholar 

  71. Singh PM, Rewari V, Chandralekha, Arora MK, Trikha A. A retrospective analysis of determinants of self-extubation in a tertiary care intensive care unit. J Emerg Trauma Shock. 2013;6(4):241–5.

    Article  Google Scholar 

  72. Whelan J, Simpson SQ, Levy H. Unplanned extubation. Predictors of successful termination of mechanical ventilatory support. Chest. 1994;105(6):1808–12.

    Article  CAS  Google Scholar 

  73. Moons P, Sels K, De Becker W, De Geest S, Ferdinande P. Development of a risk assessment tool for deliberate self-extubation in intensive care patients. Intensive Care Med. 2004;30(7):1348–55.

    Article  Google Scholar 

  74. Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive positive-pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev. 2013;12:CD004127.

    Google Scholar 

  75. Ferrer M, Valencia M, Nicolas JM, Bernadich O, Badia JR, Torres A. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med. 2006;173(2):164–70.

    Article  Google Scholar 

  76. Keenan JE, Gulack BC, Nussbaum DP, Green CL, Vaslef SN, Shapiro ML, et al. Optimal timing of tracheostomy after trauma without associated head injury. J Surg Res. 2015;198(2):475–81.

    Article  Google Scholar 

  77. McCredie VA, Alali AS, Scales DC, Adhikari NK, Rubenfeld GD, Cuthbertson BH, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25.

    Article  Google Scholar 

  78. Hyde GA, Savage SA, Zarzaur BL, Hart-Hyde JE, Schaefer CB, Croce MA, et al. Early tracheostomy in trauma patients saves time and money. Injury. 2015;46(1):110–4.

    Article  Google Scholar 

  79. Mehta AB, Cooke CR, Wiener RS, Walkey AJ. Hospital variation in early tracheostomy in the United States: a population-based study. Crit Care Med. 2016;44(8):1506–14.

    Article  Google Scholar 

  80. Andriolo BN, Andriolo RB, Saconato H, Atallah ÁN, Valente O. Early versus late tracheostomy for critically ill patients. Cochrane Database Syst Rev. 2015;1:CD007271.

    PubMed  Google Scholar 

  81. Dettmer MR, Damuth E, Zarbiv S, Mitchell JA, Bartock JL, Trzeciak S. Prognostic factors for long-term mortality in critically ill patients treated with prolonged mechanical ventilation: a systematic review. Crit Care Med. 2017;45(1):69–74.

    Article  Google Scholar 

  82. Koeppen B, Stanton BA. Oxygen and carbon dioxide transport. In: Berne & Levy physiology. London: Elsevier Mosby; 2010. p. 459–67.

    Google Scholar 

  83. Islam S, Selbong U, Taylor CJ, Ormiston IW. Does a patient’s Mallampati score predict outcome after maxillomandibular advancement for obstructive sleep apnoea? Br J Oral Maxillofac Surg. 2015;53(1):23–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, B., Davis, K. (2018). Assessment and Management of Acute Respiratory Distress in the ICU. In: Salim, A., Brown, C., Inaba, K., Martin, M. (eds) Surgical Critical Care Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-71712-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71712-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71711-1

  • Online ISBN: 978-3-319-71712-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics