Skip to main content

Abstract

One of the most important aspects of asphalt pavement deterioration is the ingress of water in pavement which leads to loss of the material characteristics, even material integrity with loss of aggregates. Thus the behaviour of asphalt mixture under moisture conditions is one of the key parameter for specifications. It’s a complex phenomenon which is influenced amongst other things by materials properties with wetting, cohesion and adhesion of bituminous binder and by environmental conditions with temperature, moisture, loading and layer type. It has been a research subject for a very long time and still not precisely described. A large number of test methods is available to estimate the affinity between aggregates and bituminous binders. These test methods can be subdivided in different ways; a first distinction can be based on the presence or absence of water during the test procedure. If water is present, the evaluation is in fact referred to as water sensitivity or moisture damage testing. Another distinction can be based on the type of sample that is evaluated. The test sample can be loose aggregates coated with a bituminous binder or a compacted asphalt mix sample. Lastly the individual components, bitumen and aggregate, can be tested separately through intrinsic properties. Furthermore, test results can also be based on the quantification of the test results, whether this is based on a qualitative or a quantitative evaluation. In RILEM TC 237 SIB, TG1 the main purpose was to evaluate common test methods, used to assess the affinity of bitumen to aggregate surfaces, to determine, if possible, the repeatability and reproducibility and to give recommendations for improvement. In this study both binders and aggregates have been considered. Three bituminous binders, two unmodified from different sources, one polymer modified binder, and four aggregate types, with different mineralogy, have been selected. The test methods considered in the study include the rolling bottle test, the boiling water stripping test and the bitumen bond strength test; also surface energy was investigated. This chapter presents the results of these tests and their accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersland OB, Goetz WH (1955) Sonic test for the evaluation of stripping resistance in compacted bituminous mixtures. AAPT 25:p148

    Google Scholar 

  • Apeagyei AK, Grenfell JA, Airey GD (2014a) Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Mater Pavement Design 15(1):239–262

    Article  Google Scholar 

  • Apeagyei AK, Grenfell JA, Airey GD (2014b) Application of fickian and non-fickian diffusion models to study moisture diffusion in asphalt mastics. Mater Struct. https://doi.org/10.1617/s11527-014-0246-2

    Google Scholar 

  • Apeagyei A, Grenfell J, Airey G (2015) Influence of aggregate absorption and diffusion properties on moisture damage in asphalt mixtures. Road Mater Pavement Design 16:404–422

    Article  Google Scholar 

  • Bagampadde U, Karlsson R (2007) Laboratory studies on stripping at bitumen/substrate interfaces using FTIR-ATR. J Mater Sci 42:3197–3206

    Article  Google Scholar 

  • Bagampadde U, Isacsson I, Kiggundu BM (2006) Impact of bitumen and aggregate composition on stripping in bituminous mixtures. Mater Struct 39:303–315

    Article  Google Scholar 

  • Beatty S, Smith J (2010) Fractional wettability and contact angle dynamics in burned water repellent soils. J Hydrol 391:97–108

    Article  Google Scholar 

  • Besamusca J, Rooijen van R, Robertus C, Beuving E (2012) The search for simple test to assess the complex of adhesion and durability of adhesion. In: 5th Eurasphalt and Eurobitume congress

    Google Scholar 

  • Bhasin A (2006) Development of methods to quantify bitumen–aggregate adhesion and loss of adhesion due to water. Ph.D. dissertation, Texas A&M University, College Station

    Google Scholar 

  • Bhasin A, Masad E, Little D, Lytton R (2006) Limits on adhesive bond energy for improved resistance of hot-mix asphalt to moisture damage. Transp Res Record: J Transp Res Board 1970:3–13

    Article  Google Scholar 

  • BitVal (2006) Analysis of available data for validation of bitumen tests. Report on phase 1 of the BitVal project

    Google Scholar 

  • Bourrel M, Verzaro F (1998) Contrôle de la rupture des émulsions de bitume dans les applications routières. Revue Generale des Routes et Aerodromes 761:58–63

    Google Scholar 

  • Canestrari F, Cardone F, Graziani A, Santagata F, Bahia H (2010) Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage. Road Mater Pavement Design 11:11–32

    Article  Google Scholar 

  • Castenada E, Such C, Hammoum F (2004) Towards a better understanding of moisture damage of hot mix asphalt using the complex modulus. In: 3rd Euroasphalt and Eurobitume Congress, paper 211, Vienna

    Google Scholar 

  • Chaudhury MK (1996) Interfacial interaction between low-energy surfaces. Rep: A Rev J Mat Sci Eng R16:97–159

    Google Scholar 

  • Chaudhury K, Whitesides G (1992) Correlation between surface free energy and surface constitution. Science 255(5049)

    Google Scholar 

  • Chukwudeme EA, Hamouda AA (2009) Oil recovery from polar components (asphaltene and SA) treated chalk rocks by low salinity water and water containing SO4 2− and Mg2+ at different temperatures, colloid and surfaces A. Physicochem Eng Aspects 336:174–182

    Article  Google Scholar 

  • Chung JY, Chaudhury MK (2005) Soft and hard adhesion. J Adhes 81:1119–1145

    Article  Google Scholar 

  • Cordon W (1979) Properties, evaluation and control of engineering materials. McGraw-Hill, NY

    Google Scholar 

  • Corte J-F, Di Benedetto H (2004) Matériaux routiers bitumineux 1: description et propriétés des mélanges, Hermès science publications

    Google Scholar 

  • Curtis C (1990) A literature review of liquid antistripping and tests for measuring stripping. SHRP-A/UIR-90-016

    Google Scholar 

  • Curtis CW, Ensley K, Epps J (1993) Fundamental properties of asphalt–aggregate interactions including adhesion and absorption. SHRP-A-341

    Google Scholar 

  • Dudásová D, Simon S, Hemmingsen PV, Sjöblom J (2008) Study of asphaltenes adsorption onto different minerals and clays part 1: experimental adsorption with UV depletion detection colloid and surfaces A. Physicochem Eng Aspects 317:1–9

    Article  Google Scholar 

  • EN 12594. Bitumen and bituminous binders, preparation of test samples. EN 12594

    Google Scholar 

  • EN 12697-11. bituminous mixtures—test methods for hot mix asphalt—part 11: determination of the affinity between aggregate and bitumen. EN 12697-11

    Google Scholar 

  • Ensley K (1973) A study of asphalt–aggregate interactions and asphalt molecular interactions by microcalorimetric methods: postulated Interaction Mechanism. J Inst Petr 59(570)

    Google Scholar 

  • Fini EH, Al-Qadi IL, Masson JF, McGhee KK (2008) Interfacial fracture energy: an indicator of bituminous material adhesion. AAPT, vol 77

    Google Scholar 

  • Fowkes F (1962) Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem 382:66

    Google Scholar 

  • Good R (1992) Contact angle, wetting and adhesion: a critical review. J Adhes Sci Technol 6:1269–1302

    Article  Google Scholar 

  • Good R, van Oss C (1991) The modern theory of contact angles and the hydrogen bond components of surface energies, modern approach to wettability: theory and application. Plenum Press, New York

    Google Scholar 

  • Grenfell J, Ahmad NB, Liu Y, Apeagyei A, Large D, Airey G (2014) Assessing asphalt mixture moisture susceptibility through intrinsic adhesion, bitumen stripping and mechanical damage. Road Mater Pavement Design 15(1):132

    Google Scholar 

  • Grönniger J (2008) Computergestuetzte Auswertung von rolling-bottle-tests/ computer aided analysis of rolling-bottle-tests. Strasse Und Autobahn 59(7):415–419

    Google Scholar 

  • Grönniger J, Wistuba M, Renken P (2010) Adhesion in bitumen-aggregate-systems: new technique for automated interpretation of rolling bottle tests. Road Mater Pavement Design 11(4):881–898

    Article  Google Scholar 

  • Gubler R, Partl MN, Canestrari F, Grilli A (2005) Influence of water and temperature on mechanical properties of selected asphalt pavements. Mater Struct 38:523–532

    Article  Google Scholar 

  • Hanz A, Bahia H, Wen H (2007) Test method to determine aggregate/asphalt adhesion properties and potential moisture damage. WHRP 07–02

    Google Scholar 

  • Hefer AW (2004) Adhesion in bitumen–aggregate systems and quantification of the effects of water on the adhesive bond. Thesis University of Pretoria, Dec 2004

    Google Scholar 

  • Hicks RG, Finn FN (1994) Validation of the relationship between asphalt properties and asphalt–aggregate mix performance. SHRP-A-398, Stage 1

    Google Scholar 

  • Hirsch V, Friemel-Goettlich B (2009) Bestimmung des adhaesiven Potentials von Bitumen und Gesteinsoberflaechen mit Hilfe der Kontaktwinkelmessmethode. Berichte der Bundesanstalt für Straßenwesen unterreihte Straßenbau, Issue 59, 2009

    Google Scholar 

  • Horgnies M, Darque-Ceretti E, Fezai H, Felder E (2011) Influence of the interfacial composition on the adhesion between aggregates and bitumen: Investigations by EDX, XPS and peel test. Int J Adhes Adhes 31:238–247

    Article  Google Scholar 

  • Howson J, Masad E, Bhasin A, Little D, Lytton R (2011) Comprehensive analysis of the surface free energy of asphalt and aggregates and the effects of changes in pH. Constr Build Mater 25:2554–2564

    Article  Google Scholar 

  • Jakarni FM (2012) Adhesion of asphalt mixtures. Ph.D. dissertation, University of Nottingham, Nottingham

    Google Scholar 

  • Jeon YW, Curtis CW (1992) A literature review of the adsorption of asphalt functionalities on aggregate surfaces. SHRP-A-3131992

    Google Scholar 

  • Jorgensen T (2002) Testing adhesion between bitumen and aggregate with the rolling bottle test and the boiling test. In: 6th International conference on bearing capacity of roads and airfields, Lisbon, Portugal

    Google Scholar 

  • Källén HA, Heyden AA, Lindh PB (2013) Measuring bitumen coverage of stones using a turntable and specular reflections. In: VISAPP, proceedings of the international conference on computer vision theory and applications, vol 1, pp 333–337

    Google Scholar 

  • Kassem E, Masad E, Bulut R, Lytton R (2006) Measurements of moisture suction and diffusion coefficient in hot mix asphalt and their relationship to moisture damage. In: Annual meeting transportation research board, Washington, D.C.

    Google Scholar 

  • Kringos N, Scarpas A, Bondt de A (2008) Determination of moisture susceptibility of mastic-stone bond strength and comparison to thermodynamical properties. Annual meeting AAPT, Philadelphia

    Google Scholar 

  • Lamperti R, Lantieri V, Sangiorgi C, Bitelli G, Simone A (2015) Semi-automatic evaluation of the degree of bitumen coverage on bitumen-coated aggregates. In Rilem SIB symposium, Ancona

    Google Scholar 

  • Laurell Lyne A, Birgisson B, Redelius P (2010) Interaction forces between mineral aggregates and bitumen calculated using the Hamaker Constant. Road Mater Pavement Design 11:305–323 (Special issue on asphalt technology EATA 2010)

    Google Scholar 

  • Laurell Lyne A, Redelius P, Collin M, Birgisson (2013) Characterisation of stripping properties of stone material in asphalt. Mater Structu 46(1):47–61

    Google Scholar 

  • Laurell Lyne A, Krivosheeva O, Birgisson B (2013) Adhesion between bitumen and aggregate: implementation of spectroscopic ellipsometry characterisation and estimation of Hamaker’s constant. Mater Struct 46(10)

    Google Scholar 

  • Lee DL, Guinn JA, Khandhal PS, Dunning RL (1990) Absorption of asphalt into porous aggregates. SHRP-A/UIR-90-009

    Google Scholar 

  • Little D, Bhassin A (2006) Using surface energy measurement to select materials for asphalt pavement. NCHRP project 9-37

    Google Scholar 

  • Liu Y, Apeagyei A, Ahmad N, Grenfell J, Airey G (2014) Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. Int J Pavement Eng 15(7):657–670

    Article  Google Scholar 

  • LTRC (1995) Compatibility of aggregate, asphalt cement and antistripping materials. LTRC report no 292

    Google Scholar 

  • Lytton R, Flumerfelt R (1998) Report to foundation CROW the Netherlands from the Texas Engineering Experiment Station. Texas A&M University

    Google Scholar 

  • Mathews DH, Colwill DM, Yüce R (1965) Adhesion tests for bituminous materials. J Appl Chem

    Google Scholar 

  • Maugis D (1999) Contact, adhesion and rupture of elastic solids. Springer, New York

    MATH  Google Scholar 

  • Meng J (2010) Affinity of asphalt to mineral aggregate: pull-off test evaluation. M.S. thesis, University of Wisconsin-Madison, Madison

    Google Scholar 

  • Miller T, Arega Z, Bahia H (2010) Correlating rheological properties of emulsion residue to early chip seal performance. J Transp Res Board 2179:66–74

    Google Scholar 

  • Miller C, Little D, Bhasin A, Gardner N, Herbert B (2012) Surface energy characteristics of natural minerals and their impact of aggregate–bitumen bond strengths and asphalt mixture durability. In: TRB annual meeting, Washington

    Google Scholar 

  • Mo L (2010) Damage at the interface of interlayers and mastic of open grade porous asphalt. Thesis University Delft

    Google Scholar 

  • Moraes R, Velasquez R, Bahia H (2011) Measuring effect of moisture on asphalt-aggregate bond with the bitumen bond strength test. J Transp Res Board 9:70–81

    Google Scholar 

  • Morgenstern A, Sschulze C, Marschke L (2010) Verbesserung der Praezision der Pruefung zur Bestimmung des Haftverhaltens zwischen groben Gesteinskoernungen und Bitumen/ Improved test methods for the determination of the affinity between aggregate and bitumen. Strasse Und Autobahn 61(12):879–884

    Google Scholar 

  • NCAT (1988) Stripping in HMA mixtures: state-of-the-art and critical review of test methods. NCAT report no 88-02

    Google Scholar 

  • Porot L, Soenen H, Besamusca J, Apeagyei A, Grenfell J, Sylbilski D (2015) Bitumen/aggregate affinity—rilem round robin test on rolling bottle test. In: RILEM SIB Symposium, Ancona

    Google Scholar 

  • Renken P (2003) Haftung zwischen Bitumen und Gesteinskörnungen—ein Statusbericht. Bitumen, 65 Jahrgang, Heft 1, March

    Google Scholar 

  • Renken P, Wistuba M, Grönniger J, Schindler K (2010) Adhesion von Bitumen am Gestein: Verfahren der quantitativen Bestimmung auf Grundlage der Europaeischen Normung. Forschung Strassenbau und Strassenverkehrstechnik, Issue 1043, 2010

    Google Scholar 

  • Rieder W, Weber H (1933) Adhesion of bituminous binders to stone. Asph.u. Teer, 37–41

    Google Scholar 

  • Rychen P, Pittet M, Dumont A-G (2010) Determination of the presence and efficiency of adhesion agent in asphalt concrete. EPFL report 153410, Swiss Federal Roads

    Google Scholar 

  • Saal R (1933) Bitumen

    Google Scholar 

  • Scholz TV, Terrel RL, Al-Joaib A, Bea J (1994) Water sensitivity: binder validation. SHRP-A-402

    Google Scholar 

  • Shah BD (2003) Evaluation of moisture damage within asphalt concrete mixes. Thesis Texas A&M University

    Google Scholar 

  • Shell (1979) Bitumes, techniques et utilisations, Shell France

    Google Scholar 

  • Some S, Delaunay D, Gaudefroy V (2013) Comparison and validation of thermal contact resistance models at solid-liquid interface taking into account the wettability parameters. Appl Therm Eng 61:513–540

    Article  Google Scholar 

  • Some S, Gaudefroy V, Delaunay D (2014) A new laboratory method to evaluate the influence of aggregate temperature on the binder-aggregate bonding: first results. Mater Struct 47:963–976

    Article  Google Scholar 

  • T. Committee (2003) Moisture sensitivity of asphalt pavements. A national seminar, San Diego, 4–6 Feb 2003

    Google Scholar 

  • Tan Y, Guo M (2013) Using surface free energy method to study the cohesion and adhesion or asphalt mastic. Constr Build Mater 47:254–260

    Article  Google Scholar 

  • Tarrer AR, Wagh V (1991) The effect of the physical and chemical characterization of the aggregate on bonding. SHRP-A/UIR-91-507

    Google Scholar 

  • RIO Technology (2003) Fundamentals of stripping in bituminous pavements. Div. of Highway Engineering, VT AR 03:01 Research, Stockholm

    Google Scholar 

  • Terrel RL, Al-Swailmi S (1994) Water sensitivity of asphalt–aggregate mixes: test sections. SHRP-A-403

    Google Scholar 

  • Tu Y, O’Carroll JB, Kotlyar LS, Sparks B (2005) Recovery of bitumen from oilsands: gelation of ultra-fine clay in the primary separation vessel. Fuel 84:653–660

    Article  Google Scholar 

  • Ulmgren N (2004) The influence of the mastic on the durability of asphalt pavements as studied by the shaking abrasion test. In: 3rd Eurasphalt and Eurobitume congress, vol 2, pp 1464–1475

    Google Scholar 

  • van Oss C, Chaudhury M, Good R (1988) Interfacial Lifshitz–van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941

    Google Scholar 

  • Wong WG, Han HF, He GP, Qiu X, Wang K (2004) Effects of water on permanent deformation potential of asphalt concrete mixtures. Mater Struct 37:532–538

    Article  Google Scholar 

  • XP T 066-043. Essai d’adhésivité passive des liants anhydres en présence d’eau. Norme Francaise

    Google Scholar 

  • Yazgan B (2003) A new testing protocol for seal coat (chip seal) aggregate binder compatibility. Master’s degree dissertation, Texas Technical University, Texas

    Google Scholar 

  • Youtcheff J, Aurilio V (1997) Moisture sensitivity of asphalt binders: evaluation and modeling of the pneumatic Adhhsion test results. In: 42nd annual conference of Canadian Technical Asphalt Association, pp 180–200

    Google Scholar 

  • Zhang J, Apeagyei A, Airey G, Grenfell J (2015) Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. Int J Adhes Adhes 62:45–54

    Article  Google Scholar 

  • Ziyani L, Gaudefroy V, Ferber V, Hammoum F (2016) A predictive and experimental method to assess bitumen emulsion wetting on mineral substrates, colloids and surfaces a: physicochem. Eng Aspects 489:322–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Porot .

Editor information

Editors and Affiliations

Glossary

RILEM

Réunion internationale des laboratoires et experts en matériaux

SIB

Testing and characterization of sustainable innovative bituminous materials and systems

TG1

Task group 1

SHRP

Strategic highway research program

ITS

Indirect tensile strength

ITSR

Indirect tensile strength ratio

CAST

Coaxial shear test

APA

Asphalt pavement analyser

EAPA

European asphalt pavement association

FEHRL

Federal highway agencies

CEN

European committee on standardization

BBS

Bitumen bond strength

AASHTO

American association of state highway and transportation officials

RRT

Round robin test

IFSTTAR

Institut français des sciences et technologies des transports, de l’aménagement et des réseaux

NTEC

Nottingham transportation engineering centre

XRF

X-ray fluorescence

RBT

Rolling bottle test

PmB

Polymer modified bitumen

PATTI®

Pneumatic adhesion tensile testing instrument

POTS

Pull-off tensile strength

Ag

Contact area of gasket with reaction plate (mm2)

BP

Burst pressure (kPa)

Aps

Area of pull stub (mm2)

C

Piston constant

BSR

Bond strength ratio

NOPTS

New pull-off test

γ

surface energy of bitumen or aggregate (mJ/m2)

γLW

Dispersive part of Lifshitz–van der Waals interaction of the surface energy (mJ/m2)

γAB

Polar part of Lifshitz–van der Waals interaction and acid-base component of the surface energy (mJ/m2)

γ+

Lewis acid component of surface interaction

γ-

Lewis base component of surface interaction

γP

Polar component of surface tension energy

γD

Dispersive component of surface tension energy

γS

Substrate surface energy

γL

Liquid surface tension

γSL

Liquid/substrate interfacial tension

Wadh

Adhesion work

\(W_{adh}^{P}\)

Polar components of adhesion work

\(W_{adh}^{D}\)

Dispersive component of adhesion work

\(W_{BA}^{a}\)

Dry bond strength, interfacial adhesion work between the bitumen (B) and aggregate (A)

\(W_{BWA}^{a}\)

Interfacial adhesion work between the bitumen (B) and aggregate (A) in presence of water

WBB

Bitumen cohesion

WBL

Adhesion work between bitumen (B) and a probe liquid (L)

DCA

Dynamic contact angle

DVS

Dynamic vapour sorption

DSA

Drop shape analyser

CAM

Contact angle measurement

SSA

Specific surface area

Rights and permissions

Reprints and permissions

Copyright information

© 2018 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porot, L. et al. (2018). Bituminous Binder. In: Partl, M., Porot, L., Di Benedetto, H., Canestrari, F., Marsac, P., Tebaldi, G. (eds) Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems. RILEM State-of-the-Art Reports, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-71023-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71023-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71022-8

  • Online ISBN: 978-3-319-71023-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics