Skip to main content

Hydration

  • Chapter
  • First Online:
Sport and Physical Activity in the Heat

Abstract

This chapter discusses the physiology of hydration, the evidence for how hydration affects performance, and practical applications for individuals who exercise. The body has an amazing ability to detect changes in body fluid, and individuals exercising are constantly losing body fluid through sweat. These losses are sensed by the body, and without proper hydration, can have a negative physiological impact. These detriments include increased heart rate and decreased cardiac output (i.e., amount of blood the heart pumps per min). The physiological consequences of mild-to-moderate dehydration include decreased performance in endurance events, along with decreased strength and power. Recent evidence suggests that mild dehydration (e.g., 1–2% body mass loss) can also lead to decrements in performance. This evidence has led to recommendations that individuals exercising should drink fluid at a rate similar to the rate of sweat loss. Calculating and using sweat rate is outlined in this chapter, which is more advantageous than just relying on thirst. Although hydration status during exercise is important, it is also important that individuals rehydrate after exercise and for the rest of the day. Last, we also examine the very important topic of overhydrating (i.e., hyponatremia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    Article  PubMed  Google Scholar 

  2. Casa DJ. Exercise in the heat. I. Fundamentals of thermal physiology, performance implications, and dehydration. J Athl Train. 1999;34(3):246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc. 1992;24(6):657–70.

    CAS  PubMed  Google Scholar 

  4. Sawka MN. Body fluid responses and hypohydration during exercise-heat stress. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis: Benchmark Press; 1988. p. 227–66.

    Google Scholar 

  5. Cheuvront SN, Kenefick RW, Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol. 2014;4(1):257–85.

    Article  PubMed  Google Scholar 

  6. Perrier ET, Armstrong LE, Daudon M, Kavouras S, Lafontan M, Lang F, et al. From state to process: defining hydration. Obes Facts. 2014;7(Suppl. 2):6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Armstrong LE. Assessing hydration status: the elusive gold standard. J Am Coll Nutr. 2007;26(5 Suppl):575S–84S.

    Article  PubMed  Google Scholar 

  8. U.S. Department of Health and Human Services, National Center for Health Statistics: Third National Health and Nutrition Examination Survey (NHANES III). 1988–1994.

    Google Scholar 

  9. Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature. 2016;3(1):119–45.

    Article  Google Scholar 

  10. Quinton PM. Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda). 2007;22:212–25.

    CAS  Google Scholar 

  11. Ely MR, Kenefick RW, Cheuvront SN, Chinevere TD, Lacher CP, Lukaski HC, et al. Surface contamination artificially elevates initial sweat mineral concentrations. J Appl Physiol. 2011;110(6):1534–40.

    Article  CAS  PubMed  Google Scholar 

  12. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.

    Article  PubMed  Google Scholar 

  13. Eichner ER. Genetic and other determinants of sweat sodium. Curr Sport Med Reports. 2008;7(4):S36–40.

    Article  Google Scholar 

  14. Sato K, Sato F. Individual variations in structure and function of human eccrine sweat gland. Am J Physiol. 1983;245(2):R203–8.

    CAS  PubMed  Google Scholar 

  15. Armstrong LE, Casa DJ. Methods to evaluate electrolyte and water turnover of athletes. Athl Train Sport Heal Care. 2009;1(4):169–79.

    Google Scholar 

  16. Baker LB, Barnes KA, Anderson ML, Passe DH, Stofan JR. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J Sports Sci. 2015;414(June):1–11.

    Google Scholar 

  17. McDermott BP, Casa DJ, Yeargin SW, Ganio MS, Lopez RM, Mooradian EA. Hydration status, sweat rates, and rehydration education of youth football campers. J Sport Rehabil. 2009;18(4):535–52.

    Article  PubMed  Google Scholar 

  18. Palmer MS, Spriet LL. Sweat rate, salt loss, and fluid intake during an intense on-ice practice in elite Canadian male junior hockey players. Appl Physiol Nutr Metab. 2008;33(2):263–71.

    Article  PubMed  Google Scholar 

  19. Ganio MS, Wingo JE, Carroll CE, Thomas MK, Cureton KJ. Fluid ingestion attenuates the decline in VO2peak associated with cardiovascular drift. Med Sci Sport Exerc. 2006;38(5):901–9.

    Google Scholar 

  20. Wingo JE, Ganio MS, Cureton KJ. Cardiovascular drift during heat stress. Exerc Sport Sci Rev. 2012;40(2):88–94.

    Article  PubMed  Google Scholar 

  21. González-Alonso J, Calbet JAL, Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol. 1999;520(2):577–89.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol. 1992;73(4):1340–50.

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong LE, Casa DJ, Watson G. Exertional hyponatremia. Curr Sports Med Rep. 2006;5(5):221–2.

    Article  PubMed  Google Scholar 

  24. Casa DJ. Proper hydration for distance running-Identifying individual fluid needs. Track Coach. 2004;167:5321–8.

    Google Scholar 

  25. Hew-Butler T, Almond C, Ayes JC, et al. Consensus statement of the First International Exercise-associate Hyponatremia Conference, Cape Town, South Africa 2005. AMAA J. 2005;18:5–8.

    Google Scholar 

  26. Armstrong LE. Exertional hyponatremia. In: Armstrong LE, editor. Exertional heat illnesses. Champaign, IL: Human Kinetics; 2003. p. 103–36.

    Google Scholar 

  27. Weschler LB. Exercise-associated hyponatremia: a mathematical review. Sports Med (New Zealand). 2005;35:899–922.

    Article  Google Scholar 

  28. Armstrong LE, Costill DL, Fink WJ. Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc. 1985;17(4):456–61.

    Article  CAS  PubMed  Google Scholar 

  29. González-Alonso J, Mora-Rodríguez R, Below PR, Coyle EF. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82(4):1229–36.

    Article  PubMed  Google Scholar 

  30. Dugas JP, Oosthuizen U, Tucker R, Noakes TD. Rates of fluid ingestion alter pacing but not thermoregulatory responses during prolonged exercise in hot and humid conditions with appropriate convective cooling. Eur J Appl Physiol. 2009;105(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  31. Gigou PY, Dion T, Asselin A, Berrigan F, Goulet EDB. Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions. Nutrients. 2012;4(8):949–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casa DJ, Stearns RL, Lopez RM, Ganio MS, McDermott BP, Yeargin SW, et al. Influence of hydration on physiological function and performance during trail running in the heat. J Athl Train. 2010;45(2):147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lopez RM, Casa DJ, Jensen KA, DeMartini JK, Pagnotta KD, Ruiz RC, et al. Examining the influence of hydration status on physiological responses and running speed during trail running in the heat with controlled exercise intensity. J Strength Cond Res. 2011;25(11):2944–54.

    Article  PubMed  Google Scholar 

  34. Adams WM, Ferraro EM, Huggins RA, Casa DJ. Influence of body mass loss on changes in heart rate during exercise in the heat: a systematic review. J Strength Cond Res. 2014;28(8):2380–9.

    Article  PubMed  Google Scholar 

  35. Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol (1985). 1985;59(5):1394–401.

    Article  CAS  Google Scholar 

  36. Nadel ER, Bullard RW, Stolwijk JA. Importance of skin temperature in the regulation of sweating. J Appl Physiol. 1971;31(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kenefick RW, Cheuvront SN, Palombo LJ, Ely BR, Sawka MN. Skin temperature modifies the impact of hypohydration on aerobic performance. J Appl Physiol. 2010;109(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  38. Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, Volek JS. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37(10):907–21.

    Article  PubMed  Google Scholar 

  39. Savoie F-A, Kenefick RW, Ely BR, Cheuvront SN, Goulet EDB. Effect of hypohydration on muscle endurance, strength, anaerobic power and capacity and vertical jumping ability: a meta-analysis. Sport Med. 2015;45(8):1207–27.

    Article  Google Scholar 

  40. Walsh RM, Noakes TD, Hawley JA, Dennis SC. Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med. 1994;15(7):392–8.

    Article  CAS  PubMed  Google Scholar 

  41. Logan-Sprenger HM, Heigenhauser GJF, Killian KJ, Spriet LL. Effects of dehydration during cycling on skeletal muscle metabolism in females. Med Sci Sports Exerc. 2012;44(10):1949–57.

    Article  PubMed  Google Scholar 

  42. Bardis CN, Kavouras SA, Kosti L, Markousi M, Sidossis LS. Mild hypohydration decreases cycling performance in the heat. Med Sci Sports Exerc. 2013;45(9):1782–9.

    Article  PubMed  Google Scholar 

  43. Bardis CN, Kavouras SA, Arnaoutis G, Panagiotakos DB, Sidossis LS. Mild dehydration and cycling performance during 5-kilometer hill climbing. J Athl Train. 2013;48(6):741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zouhal H, Groussard C, Minter G, Vincent S, Cretual A, Gratas-Delamarche A, et al. Inverse relationship between percentage body weight change and finishing time in 643 forty-two-kilometre marathon runners. Br J Sports Med. 2011;45(14):1101–5.

    Article  PubMed  Google Scholar 

  45. Wall BA, Watson G, Peiffer JJ, Abbiss CR, Siegel R, Laursen PB. Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the heat. Br J Sports Med. 2015;49:1077–83.

    Article  PubMed  Google Scholar 

  46. Cheung SS, Mcgarr GW, Mallette MM, Wallace PJ, Watson CL, Kim IM, et al. Separate and combined effects of dehydration and thirst sensation on exercise performance in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):104–11.

    Article  PubMed  Google Scholar 

  47. Kavouras SA. Thirst: survival instinct or sensitive fluid balance homeostatic mechanism? Nutr Today. 2013;48(4):S7–9.

    Article  Google Scholar 

  48. Pitts GC, Johnson RE, Consolazio FC. Work in the heat as affected by intake of water, salt and glucose. Am J Physiol. 1944;142(2):253–9.

    CAS  Google Scholar 

  49. Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc. 1992;24(6):645–56.

    Article  CAS  PubMed  Google Scholar 

  50. Passe D, Horn M, Stofan J, Horswill C, Murray R. Voluntary dehydration in runners despite favorable conditions for fluid intake. Int J Sport Nutr Exerc Metab. 2007;17(3):284–95.

    Article  PubMed  Google Scholar 

  51. Armstrong LE, Johnson EC, McKenzie AL, Ellis LA, Williamson KH. Ultraendurance cycling in a hot environment: thirst, fluid consumption, and water balance. J Strength Cond Res. 2015;29(4):869–76.

    Article  PubMed  Google Scholar 

  52. Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff RV, Rich BSE, et al. National Athletic Trainers’ Association position statement: fluid replacement for athletes. J Athl Train. 2000;35(2):212–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Armstrong LE, Johnson EC, Bergeron MF. COUNTERVIEW: is drinking to thirst adequate to appropriately maintain hydration status during prolonged endurance exercise? No. Wilderness Environ Med. 2016;27(2):195–8.

    Article  PubMed  Google Scholar 

  54. Armstrong LE, Johnson EC, Kunces LJ, Ganio MS, Judelson DA, Kupchak BR, et al. Drinking to thirst versus drinking ad libitum during road cycling. J Athl Train. 2014;49(5):624–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for water. EFSA J. 2010;8(3):1459.

    Google Scholar 

  56. Howard G, Bartram J. Domestic water quantity, service level and health. Geneva: World Health Organization; 2003. p. 1–33.

    Google Scholar 

  57. Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. In: Panel on dietary reference intakes for electrolytes, water. National Academies Press; 2005.

    Google Scholar 

  58. Armstrong LE, Pumerantz AC, Fiala KA, Roti MW, Kavouras SA, Casa DJ, et al. Human hydration indices: acute and longitudinal reference values. Int J Sport Nutr Exerc Metab. 2010;20(2):145–53.

    Article  PubMed  Google Scholar 

  59. Armstrong LE, Johnson EC, Munoz CX, Swokla B, Le Bellego L, Jimenez L, et al. Hydration biomarkers and dietary fluid consumption of women. J Acad Nutr Diet. 2012;112(7):1056–61.

    Article  PubMed  Google Scholar 

  60. Kavouras SA. Assessing hydration status. Curr Opin Clin Nutr Metab Care. 2002;5(5):519–24.

    Article  PubMed  Google Scholar 

  61. Cheuvront S, Sawka M. Hydration assessment of athletes. Sport Sci Exch. 2005;18(Figure 1):1–6.

    Google Scholar 

  62. Cheuvront SN, Kenefick RW. Am I drinking enough? Yes, no, and maybe. J Am Coll Nutr. 2016;5724(May):1–8.

    Google Scholar 

  63. Perrier ET, Johnson EC, McKenzie AL, Ellis LA, Armstrong LE. Urine colour change as an indicator of change in daily water intake: a quantitative analysis. Eur J Nutr. 2015;55(5):1943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Armstrong LE, Ganio MS, Klau JF, Johnson EC, Casa DJ, Maresh CM. Novel hydration assessment techniques employing thirst and a water intake challenge in healthy men. Appl Physiol Nutr Metab. 2014;39(2):138–44.

    Article  PubMed  Google Scholar 

  65. Robinson S, Robinson AH. Chemical composition of sweat. Physiol Rev. 1954;34(2):202–20.

    Article  CAS  PubMed  Google Scholar 

  66. Get the facts: Sodium and the dietary guidelines [Internet]. Center for Disease Control. [cited 2016 Nov 6]. https://www.cdc.gov/salt/pdfs/Sodium_Dietary_Guidelines.pdf. Accessed 6 Nov 2016.

  67. Jacobson MF, Havas S, McCarter R. Changes in sodium levels in processed and restaurant foods, 2005 to 2011. JAMA Intern Med. 2013;173(14):1285–91.

    Article  CAS  PubMed  Google Scholar 

  68. Armstrong LE, Curtis WC, Hubbard RW, Francesconi RP, Moore R, Askew EW. Symptomatic hyponatremia during prolonged exercise in heat. Med Sci Sports Exerc. 1993;25(5):543–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Ganio PhD, FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganio, M.S., Armstrong, L.E., Kavouras, S.A. (2018). Hydration. In: Casa, D. (eds) Sport and Physical Activity in the Heat. Springer, Cham. https://doi.org/10.1007/978-3-319-70217-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70217-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70216-2

  • Online ISBN: 978-3-319-70217-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics