Skip to main content

Nanotechnology and Its Applications in Knee Surgery

  • Chapter
  • First Online:
Book cover Micro and Nanomanufacturing Volume II

Abstract

Nanotechnology is the application and manipulation of structures, typically particles or molecules within the ‘nano’ range (one billionth of a metre (nm)). Nanoparticles measure 100 nm or less and have a greater surface area to weight ratio, meaning they can alter the properties of many conventional materials. Nanoparticles can be used in conjugation with traditional materials or to create novel structures with unique electrical, chemical and mechanical properties. These natural and artificial nanostructures offer new approaches to the management of disease; from diagnostics to treatment and preventative applications. These include advances in targeted drug delivery, repair mechanisms and healing, antimicrobial coats on implant surfaces, osteointegration of implants and the use of nanoscaffolds for tissue integration and regeneration. This chapter examines current concepts in nanomedicine and the potential applications of nanotechnology in the field of orthopaedics with a particular focus on surgery of the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleshko N, Grande DA, Myers KR (2012) Nanotechnology in orthopaedics. J Am Acad Orthop Surg 20(1):60–62

    Google Scholar 

  2. Favier I, Teuma E, Gómez M (2009) Palladium and ruthenium nanoparticles: reactivity and coordination at the metallic surface. C R Chim 12(5):533–545

    Article  Google Scholar 

  3. Park S-C, Kim N, Ji S, Lim H (2016) Fabrication and characterization of moth-eye mimicking nanostructured convex lens. Microelectron Eng 158:35–40

    Article  Google Scholar 

  4. Ma S, Wang D, Liang Y, Sun B, Gorb SN, Zhou F (2015) Gecko-inspired but chemically switched friction and adhesion on nanofibrillar surfaces. Small 11(9–10):1131–1137

    Article  Google Scholar 

  5. Karthick B, Maheshwari R (2008) Lotus-inspired nanotechnology applications. Resonance 13(12):1141–1145

    Article  Google Scholar 

  6. Kawase T, Tanaka K, Shiono N, Seirai Y, Oda M (2004) Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew Chem Int Ed 43(13):1722–1724

    Article  Google Scholar 

  7. Culpepper ML, DiBiasio CM, Panas RM, Magleby S, Howell LL (2006) Simulation of a carbon nanotube-based compliant parallel-guiding mechanism: a nanomechanical building block. Appl Phys Lett 89:203111. https://doi.org/10.1063/1.2388143

    Article  Google Scholar 

  8. Brown CP (2013) Advancing musculoskeletal research with nanoscience. Nat Rev Rheumatol 9(10):614–623

    Article  Google Scholar 

  9. Korkusuz F (2013) Editorial comment: nanoscience in musculoskeletal medicine. Clin Orthop Relat Res 471(8):2530–2531

    Article  Google Scholar 

  10. Bernthal NM, Stavrakis AI, Billi F et al (2010) A mouse model of post-arthroplasty staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One 5(9):e12580

    Article  Google Scholar 

  11. Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304(2):524–529

    Article  Google Scholar 

  12. Zhu H, Guo Z, Liu W (2014) Adhesion behaviors on superhydrophobic surfaces. Chem Commun (Camb) 50(30):3900–3913

    Article  Google Scholar 

  13. Goldman M, Juodzbalys G, Vilkinis V (2014) Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. J Oral Maxillofac Res 5(3):e1

    Article  Google Scholar 

  14. Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15(8):13849–13880

    Article  Google Scholar 

  15. Holinka J, Pilz M, Kubista B, Presterl E, Windhager R (2013) Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J 95-B(5):678–682

    Article  Google Scholar 

  16. Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358(1–2):37–54

    Article  Google Scholar 

  17. Savaliya R, Shah D, Singh R et al (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab

    Google Scholar 

  18. Ruggiero C, Pastorino L, Herrera OL (2010) Nanotechnology based targeted drug delivery. Conf Proc IEEE Eng Med Biol Soc 2010:3731–3732

    Google Scholar 

  19. Hamidi M, Azadi A, Rafiei P, Ashrafi H (2013) A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst 30(5):435–467

    Article  Google Scholar 

  20. Zhang Y, Huang Y, Li S (2014) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 15(4):862–871

    Article  Google Scholar 

  21. Kateb B, Chiu K, Black KL et al (2011) Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 54(Suppl 1):S106–S124

    Article  Google Scholar 

  22. Man HB, Kim H, Kim HJ et al (2014) Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine 10(2):359–369

    Article  Google Scholar 

  23. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  Google Scholar 

  24. Von Hoff DD, Mita MM, Ramanathan RK et al (2016) Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 22(13):3157–3163

    Article  Google Scholar 

  25. Freeman AI, Halladay LJ, Cripps P (2012) The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J 192(3):489–493

    Article  Google Scholar 

  26. Parthasarathi V, Thilagavathi G (2013) Developing antiviral surgical gown using nonwoven fabrics for health care sector. Afr Health Sci 13(2):327–332

    Google Scholar 

  27. Health Quality Ontario (2006) Nanotechnology: an evidence-based analysis. Ont Health Technol Assess Ser 6(19):1–43

    Google Scholar 

  28. Makidon PE, Nigavekar SS, Bielinska AU et al (2010) Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J Aerosol Med Pulm Drug Deliv 23(2):77–89

    Article  Google Scholar 

  29. Bailey ZS, Nilson E, Bates JA et al (2016) Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2016.4644

  30. Grausova L, Bacakova L, Kromka A et al (2009) Nanodiamond as promising material for bone tissue engineering. J Nanosci Nanotechnol 9(6):3524–3534

    Article  Google Scholar 

  31. Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832

    Article  Google Scholar 

  32. Cormode DP, Skajaa T, Fayad ZA, Mulder WJ (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29(7):992–1000

    Article  Google Scholar 

  33. Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA (2009) Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther 85(5):531–534

    Article  Google Scholar 

  34. Ali SM, Aijazi T, Axelsson K, Nur O, Willander M (2011) Wireless remote monitoring of glucose using a functionalized ZnO nanowire arrays based sensor. Sensors (Basel) 11(9):8485–8496

    Article  Google Scholar 

  35. Chen H, Li J (2007) Nanotechnology: moving from microarrays toward nanoarrays. Methods Mol Biol 381:411–436

    Google Scholar 

  36. Miled MA, Massicotte G, Sawan M (2012) Dielectrophoresis-based integrated lab-on-chip for nano and micro-particles manipulation and capacitive detection. IEEE Trans Biomed Circuits Syst 6(2):120–132

    Article  Google Scholar 

  37. Schofer MD, Roessler PP, Schaefer J et al (2011) Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PLoS One 6(9):e25462

    Article  Google Scholar 

  38. Deng M, James R, Laurencin CT, Kumbar SG (2012) Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Trans Nanobioscience 11(1):3–14

    Article  Google Scholar 

  39. Sartori M, Giavaresi G, Parrilli A et al (2015) Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. Int Orthop 39(10):2041–2052

    Article  Google Scholar 

  40. Li Y, Jiao Y, Li X, Guo Z (2015) Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem Biophys Res Commun 460(2):151–156

    Article  Google Scholar 

  41. Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88

    Article  Google Scholar 

  42. Kelly EW, Coghlan J, Bell S (2004) Five- to thirteen-year follow-up of the GSB III total elbow arthroplasty. J Shoulder Elbow Surg 13(4):434–440

    Article  Google Scholar 

  43. Kinov P, Bukarev D, Dimov V, Kazakov K, Tivchev P (2007) Revision total hip arthroplasty with cementing technique—five-year results. Chir Narzadow Ruchu Ortop Pol 72(4):293–296

    Google Scholar 

  44. Poss R, Brick GW, Wright RJ, Roberts DW, Sledge CB (1988) The effects of modern cementing techniques on the longevity of total hip arthroplasty. Orthop Clin North Am 19(3):591–598

    Google Scholar 

  45. Evans BG, Salvati EA, Huo MH, Huk OL (1993) The rationale for cemented total hip arthroplasty. Orthop Clin North Am 24(4):599–610

    Google Scholar 

  46. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD (2014) Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 10(8):3363–3371

    Article  Google Scholar 

  47. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):61–71

    Google Scholar 

  48. Rieger E, Dupret-Bories A, Salou L et al (2015) Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale 7(21):9908–9918

    Article  Google Scholar 

  49. Zan X, Kozlov M, McCarthy TJ, Su Z (2010) Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid). Biomacromolecules 11(4):1082–1088

    Article  Google Scholar 

  50. Tran PA, Sarin L, Hurt RH, Webster TJ (2010) Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A 93(4):1417–1428

    Google Scholar 

  51. Gu W, Wu C, Chen J, Xiao Y (2013) Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305–2317

    Article  Google Scholar 

  52. Ramanlal Chaudhari K, Kumar A, Megraj Khandelwal VK et al (2012) Bone metastasis targeting: a novel approach to reach bone using zoledronate anchored PLGA nanoparticle as carrier system loaded with docetaxel. J Control Release 158(3):470–478

    Article  Google Scholar 

  53. Susa M, Iyer AK, Ryu K et al (2009) Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 9:399

    Article  Google Scholar 

  54. Sun K, Wang J, Zhang J, Hua M, Liu C, Chen T (2011) Dextran-g-PEI nanoparticles as a carrier for co-delivery of adriamycin and plasmid into osteosarcoma cells. Int J Biol Macromol 49(2):173–180

    Article  Google Scholar 

  55. Yang L, Webster TJ (2009) Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 6(8):851–864

    Article  Google Scholar 

  56. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  Google Scholar 

  57. Zhao L, Wang H, Huo K et al (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32(24):5706–5716

    Article  Google Scholar 

  58. United Kingdom Department of Health (2016) National joint registry for England, wales, Northern Ireland and The Isle of Man, 13th Annual Report. www.njrcentre.org.uk. Accessed May 2017.

  59. Tomisa AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E (2011) Nanotechnology approaches to improve dental implants. Int J Oral Maxillofac Implants 26(Suppl):25–44. discussion 45-9

    Google Scholar 

  60. Raimondo T, Puckett S, Webster TJ (2010) Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. Int J Nanomedicine 5:647–652

    Google Scholar 

  61. Bahl S, Shreyas P, Trishul MA, Suwas S, Chatterjee K (2015) Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale 7(17):7704–7716

    Article  Google Scholar 

  62. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739

    Article  Google Scholar 

  63. Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70(1):129–138

    Article  Google Scholar 

  64. Singh AV, Vyas V, Patil R et al (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS One 6(9):e25029

    Article  Google Scholar 

  65. Shida T, Koseki H, Yoda I, Horiuchi H, Sakoda H, Osaki M (2013) Adherence ability of staphylococcus epidermidis on prosthetic biomaterials: An in vitro study. Int J Nanomedicine 8:3955–3961

    Google Scholar 

  66. Ivanova EP, Truong VK, Wang JY et al (2010) Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir 26(3):1973–1982

    Article  Google Scholar 

  67. Truong VK, Lapovok R, Estrin YS et al (2010) The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31(13):3674–3683

    Article  Google Scholar 

  68. Cheng H, Li Y, Huo K, Gao B, Xiong W (2014) Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J Biomed Mater Res A 102(10):3488–3499

    Article  Google Scholar 

  69. Gao A, Hang R, Huang X et al (2014) The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 35(13):4223–4235

    Article  Google Scholar 

  70. Mei S, Wang H, Wang W et al (2014) Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials 35(14):4255–4265

    Article  Google Scholar 

  71. Dong W, Zhu Y, Zhang J et al (2013) Investigation on the antibacterial micro-porous titanium with silver nano-particles. J Nanosci Nanotechnol 13(10):6782–6786

    Article  Google Scholar 

  72. Panacek A, Balzerova A, Prucek R et al (2013) Preparation, characterization and antimicrobial efficiency of ag/PDDA-diatomite nanocomposite. Colloids Surf B Biointerfaces 110:191–198

    Article  Google Scholar 

  73. Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymer 3:340–366

    Article  Google Scholar 

  74. Kvitek L, Panacek A, Soukupova J et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  Google Scholar 

  75. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Dalby MJ (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18(2):399–404

    Article  Google Scholar 

  76. Miyauchi T, Yamada M, Yamamoto A et al (2010) The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 31(14):3827–3839

    Article  Google Scholar 

  77. Salou L, Hoornaert A, Louarn G, Layrolle P (2015) Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater 11:494–502

    Article  Google Scholar 

  78. Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy? Nanomedicine (Lond) 7(6):791–793

    Article  Google Scholar 

  79. Antoci V Jr, Adams CS, Parvizi J, Ducheyne P, Shapiro IM, Hickok NJ (2007) Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin Orthop Relat Res 461:81–87

    Google Scholar 

  80. Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31(4):706–713

    Article  Google Scholar 

  81. Fu J, Ji J, Fan D, Shen J (2006) Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 79(3):665–674

    Article  Google Scholar 

  82. Khandaker M, Li Y, Morris T (2013) Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces. J Biomech 46(5):1035–1039. https://doi.org/10.1016/j.jbiomech.2012.12.006. Epub 2013 Jan 16

    Article  Google Scholar 

  83. Ricker A, Liu-Snyder P, Webster TJ (2008) The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. Int J Nanomedicine 3(1):125–132

    Article  Google Scholar 

  84. Argatov I, Mishuris G (2016) Articular contact mechanics from an asymptotic modeling perspective: a review. Front Bioeng Biotechnol 4:83

    Article  Google Scholar 

  85. Li H, Jiang J, Wu Y, Chen S (2012) Potential mechanisms of a periosteum patch as an effective and favourable approach to enhance tendon-bone healing in the human body. Int Orthop 36(3):665–669

    Article  Google Scholar 

  86. Ch'ng S, Wong GL, Clark JR (2014) Reconstruction of the trachea. J Reconstr Microsurg 30(3):153–162

    Google Scholar 

  87. Kon E, Delcogliano M, Filardo G, Altadonna G, Marcacci M (2009) Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 17(11):1312–1315. https://doi.org/10.1007/s00167-009-0819-8. Epub 2009 May 26

    Article  Google Scholar 

  88. Takakuda K, Koyama Y, Matsumoto HN et al (2007) Material design of bioabsorbable inorganic/organic composites for bone regeneration. J Nanosci Nanotechnol 7(3):738–741

    Article  Google Scholar 

  89. Gianotti SM, Marshall SW, Hume PA, Bunt L (2009) Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport 12(6):622–627

    Article  Google Scholar 

  90. Joseph AM, Collins CL, Henke NM, Yard EE, Fields SK, Comstock RD (2013) A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train 48(6):810–817

    Article  Google Scholar 

  91. Andernord D, Bjornsson H, Petzold M et al (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish national knee ligament register on 13,102 patients. Am J Sports Med 42(7):1574–1582

    Article  Google Scholar 

  92. Kiapour AM, Murray MM (2014) Basic science of anterior cruciate ligament injury and repair. Bone Joint Res 3(2):20–31

    Article  Google Scholar 

  93. Vavken P, Fleming BC, Mastrangelo AN, Machan JT, Murray MM (2012) Biomechanical outcomes after bioenhanced anterior cruciate ligament repair and anterior cruciate ligament reconstruction are equal in a porcine model. Arthroscopy 28(5):672–680

    Article  Google Scholar 

  94. Liwen L, Hui W, Ming N et al (2014) Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Transl 2:35–42

    Google Scholar 

  95. Kadonishi Y, Deie M, Takata T, Ochi M (2012) Acceleration of tendon-bone healing in anterior cruciate ligament reconstruction using an enamel matrix derivative in a rat model. J Bone Joint Surg Br 94(2):205–209

    Article  Google Scholar 

  96. Haenle M, Fritsche A, Zietz C et al (2011) An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties. J Mater Sci Mater Med 22(2):381–387

    Article  Google Scholar 

  97. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C (2012) Antibacterial activity and increased bone marrow stem cell functions of zn-incorporated TiO2 coatings on titanium. Acta Biomater 8(2):904–915

    Article  Google Scholar 

  98. Stevenson S, Emery SE, Goldberg VM (1996) Factors affecting bone graft incorporation. Clin Orthop Relat Res 324:66–74

    Article  Google Scholar 

  99. Liu Y, Ramanath HS, Wang DA (2008) Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol 26(4):201–209

    Article  Google Scholar 

  100. Chou YC, Yeh WL, Chao CL, Hsu YH et al (2016) Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt. Int J Nanomedicine 11:4173–4186. https://doi.org/10.2147/IJN.S108939

    Article  Google Scholar 

  101. Han F, Zhang P, Sun Y, Lin C, Zhao P, Chen J (2015) Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction. Int J Nanomedicine 10:7333–7343

    Google Scholar 

  102. Grant SA, Smith SE, Schmidt H, Pfeiffer F, Kuroki K, Sherman S, White R, Grant DA (2017) In vivo bone tunnel evaluation of nanoparticle-grafts using an ACL reconstruction rabbit model. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.36000

  103. Smith SE, White RA, Grant DA, Grant SA (2016) Gold and hydroxyapatite nano-composite scaffolds for anterior cruciate ligament reconstruction: in vitro characterization. J Nanosci Nanotechnol 16(1):1160–1169

    Article  Google Scholar 

  104. Evans S, Shaginaw J, Bartolozzi A (2014) Acl reconstruction—it's all about timing. Int J Sports Phys Ther 9(2):268–273

    Google Scholar 

  105. Zhang ZG, Li ZH, Mao XZ, Wang WC (2011) Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63(5):437–443. https://doi.org/10.1007/s10616-011-9367-4. Epub 2011 Jul 12

    Article  Google Scholar 

  106. Mehdikhani-Nahrkhalaji M, Fathi MH, Mortazavi V, Mousavi SB et al (2012) Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation. J Mater Sci Mater Med 23(2):485–495. https://doi.org/10.1007/s10856-011-4507-0. Epub 2011 Nov 30

    Article  Google Scholar 

  107. Moroni A, Faldini C, Pegreffi F, Giannini S (2004) HA-coated screws decrease the incidence of fixation failure in osteoporotic trochanteric fractures. Clin Orthop Relat Res 425:87–92

    Article  Google Scholar 

  108. Forster Y, Rentsch C, Schneiders W et al (2012) Surface modification of implants in long bone. Biomatter 2(3):149–157

    Article  Google Scholar 

  109. Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118. https://doi.org/10.1021/nn507488s. Epub 2015 Feb 25

    Article  Google Scholar 

  110. Paul A, Manoharan V, Krafft D, Assmann A et al (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B Mater Biol Med 4(20):3544–3554. Epub 2016 Feb 4

    Article  Google Scholar 

  111. Gao H, Zhang G, Wang J, Zhao F et al (2015) Clinical effects of novel nanoscaled core decompression rods combined with umbilical cord mesenchymal stem cells on the treatment of early osteonecrosis of the femoral head. J Nanomat:902836. https://doi.org/10.1155/2015/902836

  112. Yang P, Bian C, Huang X, Shi A, Wang C, Wang K (2014) Core decompression in combination with nano-hydroxyapatite/polyamide 66 rod for the treatment of osteonecrosis of the femoral head. Arch Orthop Trauma Surg 134(1):103–112. https://doi.org/10.1007/s00402-013-1885-4. Epub 2013 Nov

    Article  Google Scholar 

  113. Nandi SK, Kundu B, Ghosh SK, De DK, Basu D (2008) Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci 9(2):183–191

    Article  Google Scholar 

  114. Bartrip PW (2004) History of asbestos related disease. Postgrad Med J 80(940):72–76

    Article  Google Scholar 

  115. Viswanath B, Kim S (2016) Influence of nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol

    Google Scholar 

  116. Kim D, Finkenstaedt-Quinn S, Hurley KR, Buchman JT, Haynes CL (2014) On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst 139(5):906–913

    Article  Google Scholar 

  117. Rollerova E, Tulinska J, Liskova A et al (2015) Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocr Regul 49(2):97–112

    Article  Google Scholar 

  118. Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty. Five to nine-year follow-up. J Bone Joint Surg Am 88(6):1183–1191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalambos P. Charalambous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwaees, T.A., Pearce, A., Ring, J., Sutton, P., Charalambous, C.P. (2018). Nanotechnology and Its Applications in Knee Surgery. In: Jackson, M., Ahmed, W. (eds) Micro and Nanomanufacturing Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-67132-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67132-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67130-7

  • Online ISBN: 978-3-319-67132-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics