Skip to main content

Osteocardiology: Endochondral Bone Formation

  • Chapter
  • First Online:
Book cover Osteocardiology
  • 292 Accesses

Abstract

Osteoblastogenesis is the molecular regulation of bone formation in the skeleton. Parallel risk factors for atherosclerosis and osteoporosis have emerged as the initiating factors for both disease processes. As bone formation decreases in the skeleton, it increases in the heart. This chapter outlines the parallel phenotype as bone forms in the heart while leaving the skeleton, to identify the osteogenic phenotype. Over time, this process may be reversed in both organs, as identification and targeting of the pathways allows for clinical therapies to modify and slow progression of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien KD, Kuusisto J, Reichenbach DD, et al. Osteopontin is expressed in human aortic valvular lesions [comment]. Circulation. 1995;92:2163–8.

    Article  PubMed  Google Scholar 

  2. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522–8.

    Article  PubMed  Google Scholar 

  3. Rajamannan NM, Subramaniam M, Rickard D, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107:2181–4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2260–5.

    Article  Google Scholar 

  5. Caira FC, Stock SR, Gleason TG, et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47:1707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jian B, Jones PL, Li Q, Mohler ER 3rd, Schoen FJ, Levy RJ. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol. 2001;159:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tintut Y, Alfonso Z, Saini T, et al. Multilineage potential of cells from the artery wall. Circulation. 2003;108:2505–10.

    Article  PubMed  Google Scholar 

  8. Parhami F, Basseri B, Hwang J, Tintut Y, Demer LL. High-density lipoprotein regulates calcification of vascular cells. Circ Res. 2002;91:570–6.

    Article  CAS  PubMed  Google Scholar 

  9. Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17:680–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997;17:547–52.

    Article  PubMed  Google Scholar 

  11. O’Brien KD, Kuusisto J, Reichenbach DD, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92:2163–8.

    Article  PubMed  Google Scholar 

  12. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005;115:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tintut Y, Parhami F, Bostrom K, Jackson SM, Demer LL. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273:7547–53.

    Article  CAS  PubMed  Google Scholar 

  14. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105:650–5.

    Article  CAS  PubMed  Google Scholar 

  15. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34:715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.

    Article  CAS  PubMed  Google Scholar 

  17. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  CAS  PubMed  Google Scholar 

  18. Fujino T, Asaba H, Kang MJ, et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S Am. 2003;100:229–34.

    Article  CAS  Google Scholar 

  19. Babij P, Zhao W, Small C, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003;18:960–74.

    Article  CAS  PubMed  Google Scholar 

  20. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39.

    Article  CAS  PubMed  Google Scholar 

  21. Holmen SL, Giambernardi TA, Zylstra CR, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res. 2004;19:2033–40.

    Article  CAS  PubMed  Google Scholar 

  22. Awan Z, Denis M, Bailey D, et al. The LDLR deficient mouse as a model for aortic calcification and quantification by micro-computed tomography. Atherosclerosis. 2011;219:455–62.

    Article  CAS  PubMed  Google Scholar 

  23. Rajamannan NM. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE−/− /Lrp5−/− mice. J Cell Biochem. 2011;112:2987–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajamannan NM. Atorvastatin attenuates bone loss and aortic valve atheroma in LDLR mice. Cardiology. 2015;132:11–5.

    Article  CAS  PubMed  Google Scholar 

  25. Rajamannan NM. Calcific aortic valve disease in familial hypercholesterolemia: the LDL-density-gene effect. J Am Coll Cardiol. 2015;66:2696–8.

    Article  PubMed  Google Scholar 

  26. ten Kate GJ, Bos S, Dedic A, et al. Increased aortic valve calcification in familial hypercholesterolemia: prevalence, extent, and associated risk factors. J Am Coll Cardiol. 2015;66:2687–95.

    Article  PubMed  Google Scholar 

  27. Figueiredo CP, Rajamannan NM, Lopes JB, et al. Serum phosphate and hip bone mineral density as additional factors for high vascular calcification scores in a community-dwelling: The Sao Paulo Ageing & Health Study (SPAH). Bone. 2012;52:354–9.

    Article  PubMed  Google Scholar 

  28. Brochier ML, Arwidson P. Coronary heart disease risk factors in women. Eur Heart J. 1998;19(Suppl A):A45–52.

    PubMed  Google Scholar 

  29. Montalcini T, Gorgone G, Pujia A. Association between pulse pressure and subclinical carotid atherosclerosis in normotensive and hypertensive post-menopausal women. Clin Exp Hypertens. 2009;31:64–70.

    Article  PubMed  Google Scholar 

  30. Bolego C, Poli A, Paoletti R. Smoking and gender. Cardiovasc Res. 2002;53:568–76.

    Article  CAS  PubMed  Google Scholar 

  31. Rajamannan NM. Calcific aortic stenosis: a disease ready for prime time. Circulation. 2006;114:2007–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rajamannan NM. Low-density lipoprotein and aortic stenosis. Heart. 2008;94:1111–2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rajamannan NM. Mechanisms of aortic valve calcification: the LDL-density-radius theory A: translation from cell signaling to physiology. Am J Physiol. 2010;298:H5–15.

    CAS  Google Scholar 

  34. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated Lrp5 osteogenesis in eNOS(−/−) null mice. J Cell Biochem. 2012;113:1623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajamannan NM, Bonow RO, Rahimtoola SH. Calcific aortic stenosis: an update. Nat Clin Pract. 2007;4:254–62.

    Article  CAS  Google Scholar 

  36. Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med. 2003;349:717–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rajamannan NM, Sangiorgi G, Springett M, et al. Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis. 2001;10:371–4.

    CAS  PubMed  Google Scholar 

  38. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation. 2005;112:I229–34.

    PubMed  PubMed Central  Google Scholar 

  39. Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105:2660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajamannan NM, Subramaniam M, Stock SR, et al. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005;91:806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burnett JR, Vasikaran SD. Cardiovascular disease and osteoporosis: is there a link between lipids and bone? Ann Clin Biochem. 2002;39:203–10.

    Article  CAS  PubMed  Google Scholar 

  42. Hjortnaes J, Butcher J, Figueiredo JL, et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 2010;31:1975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Schouw YT, Grobbee DE. Menopausal complaints, oestrogens, and heart disease risk: an explanation for discrepant findings on the benefits of post-menopausal hormone therapy. Eur Heart J. 2005;26:1358–61.

    Article  PubMed  Google Scholar 

  44. Tekin GO, Kekilli E, Yagmur J, et al. Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. Int J Cardiol. 2008;131:66–9.

    Article  PubMed  Google Scholar 

  45. Rajamannan NM. The role of Lrp5/6 in cardiac valve disease: LDL-density-pressure theory. J Cell Biochem. 2011;112:2222–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajamannan NM, Evans FJ, Aikawa E, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124:1783–91.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rajamannan NM. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler Thromb Vasc Biol. 2011;31:2777–8.

    Article  CAS  PubMed  Google Scholar 

  48. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated Lrp5 osteogenesis in eNOS(−/−) null mice. J Cell Biochem. 2012;113:1623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rajamannan NM, Caplice N, Anthikad F, et al. Cell proliferation in carcinoid valve disease: a mechanism for serotonin effects. J Heart Valve Dis. 2001;10:827–31.

    CAS  PubMed  Google Scholar 

  51. Rajamannan NM. Calcific aortic stenosis: medical and surgical management in the elderly. Curr Treat Options Cardiovasc Med. 2005;7:437–42.

    Article  PubMed  Google Scholar 

  52. Rajamannan NM, Nealis TB, Subramaniam M, et al. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation. 2005;111:3296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tintut Y, Demer LL. Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol. 2001;12:555–60.

    Article  CAS  PubMed  Google Scholar 

  54. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  CAS  PubMed  Google Scholar 

  55. Tintut Y, Abedin M, Cho J, Choe A, Lim J, Demer LL. Regulation of RANKL-induced osteoclastic differentiation by vascular cells. J Mol Cell Cardiol. 2005;39:389–93.

    Article  CAS  PubMed  Google Scholar 

  56. Abedin M, Tintut Y, Demer LL. Mesenchymal stem cells and the artery wall. Circ Res. 2004;95:671–6.

    Article  CAS  PubMed  Google Scholar 

  57. Garfinkel A, Tintut Y, Petrasek D, Bostrom K, Demer LL. Pattern formation by vascular mesenchymal cells. Proc Natl Acad Sci U S A. 2004;101:9247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004;24:e6–10.

    Article  CAS  PubMed  Google Scholar 

  59. Mody N, Tintut Y, Radcliff K, Demer LL. Vascular calcification and its relation to bone calcification: possible underlying mechanisms. J Nucl Cardiol. 2003;10:177–83.

    Article  PubMed  Google Scholar 

  60. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res. 2001;16:182–8.

    Article  CAS  PubMed  Google Scholar 

  61. Parhami F, Tintut Y, Patel JK, Mody N, Hemmat A, Demer LL. Regulation of vascular calcification in atherosclerosis. Z Kardiol. 2001;90(Suppl 3):27–30.

    PubMed  Google Scholar 

  62. Makkena B, Salti H, Subramaniam M, et al. Atorvastatin decreases cellular proliferation and bone matrix expression in the hypercholesterolemic mitral valve. J Am Coll Cardiol. 2005;45:631–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kupcsik L, Meurya T, Flury M, Stoddart M, Alini M. Statin-induced calcification in human mesenchymal stem cells is cell death related. J Cell Mol Med. 2009;13:4465–73.

    Article  CAS  PubMed  Google Scholar 

  64. Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J Cell Biochem. 2004;92:458–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rajamannan, N.M. (2018). Osteocardiology: Endochondral Bone Formation. In: Osteocardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-64994-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64994-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64993-1

  • Online ISBN: 978-3-319-64994-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics