Skip to main content

Self-Organization of Pristine C60 Fullerene and its Complexes with Chemotherapy Drugs in Aqueous Solution as Promising Anticancer Agents

  • Conference paper
  • First Online:
Modern Problems of Molecular Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 197))

Abstract

The self-organization of pristine C60 fullerene and its complexation with chemotherapy drugs (in particular, doxorubicin, cisplatin and landomycin A) in aqueous solution were reviewed as a possible key stage of the mechanism of the in vivo and in vitro biological synergy, observed when these drugs are administered along with C60 fullerene. The results of application of various physico-chemical methods have been analyzed enabling to get insight into the nature of forces stabilizing complexes of C60 fullerene with these drugs. A physico-chemical mechanism has been proposed allowing, at least in part, to explain the C60-drug biological interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Cataldo, T. Da Ros (eds.), Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Series: Carbon Materials: Chemistry and Physics (Springer, Netherlands, 2008)

    Google Scholar 

  2. P. Anilkumar, F. Lu, L. Cao et al., Fullerenes for applications in biology and medicine. Current Med. Chem. 18, 2045 (2011)

    Article  Google Scholar 

  3. V.V. Turov, V.F. Chehun, T.V. Krupskaya et al., Effect of small addition of C60 fullerenes on the hydrated properties of nanocomposites based on highly dispersed silica and DNA. Chem. Phys. Lett. 496, 152 (2010)

    Article  ADS  Google Scholar 

  4. S. Foley, C. Crowley, M. Smaihi et al., Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294, 116 (2002)

    Article  Google Scholar 

  5. S. Prylutska, R. Bilyy, M. Overchuk et al., Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 8, 522 (2012)

    Article  Google Scholar 

  6. S.V. Prylutska, I.I. Grynyuk, O.P. Matyshevska et al., Anti-oxidant properties of C60 fullerenes in vitro. Fuller. Nanotub. Carbon Nanostruct. 16, 698 (2008)

    Article  ADS  Google Scholar 

  7. G. Andrievsky, V. Klochkov, L. Derevyanchenko, Is the C60 fullerene molecule toxic?! Fuller. Nanotub. Carbon Nanostruct. 13, 363 (2005)

    Google Scholar 

  8. N. Levi, R. Hantgan, M. Lively et al., C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J. Nanobiotechnol. 4, 14 (2006)

    Article  Google Scholar 

  9. S.V. Prylutska, O.P. Matyshevska, A.A. Golub et al., Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater. Sci. Eng. C 27, 1121 (2007)

    Article  Google Scholar 

  10. J. Kolosnjaj, H. Szwarc, F. Moussa, Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol. 620, 168 (2007)

    Article  Google Scholar 

  11. H.J. Johnston, G.R. Hutchison, F.M. Christensen et al., The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 114, 162 (2010)

    Article  Google Scholar 

  12. S.V. Prylutska, A.P. Burlaka, Y.I. Prylutskyy et al., Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol. 33, 162 (2011)

    Google Scholar 

  13. S.V. Prylutska, A.P. Burlaka, P.P. Klymenko et al., Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2, 105 (2011)

    Article  Google Scholar 

  14. R.R. Panchuk, S.V. Prylutska, V.V. Chumak et al., Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol. 11, 1139 (2015)

    Article  Google Scholar 

  15. S. Prylutska, L. Skivka, G. Didenko et al., Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett. 10, 499 (2015)

    Article  ADS  Google Scholar 

  16. S.V. Prylutska, V.F. Korolovych, Y.I. Prylutskyy et al., Tumor-inhibitory effect of C60 fullerene complex with doxorubicin. Nanomed. Nanobiol. 2, 49 (2015)

    Google Scholar 

  17. M.V. Avdeev, A.A. Khokhryakov, T.V. Tropin et al., Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir 20, 4363 (2004)

    Article  Google Scholar 

  18. N.O. Mchedlov-Petrossyan, Fullerenes in liquid media: an unsettling intrusion into the solution chemistry. Chem. Rev. 113, 5149 (2013)

    Article  Google Scholar 

  19. Yu. Rud, L. Buchatskyy, Y. Prylutskyy et al., Using C60 fullerenes for photodynamic inactivation of mosquito iridescent viruses. J. Enzym. Inhib. Med. Chem. 27, 614 (2012)

    Google Scholar 

  20. Z. Chen, R. Mao, Y. Liu, Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr. Drug Metab. 13, 1035 (2012)

    Article  Google Scholar 

  21. G.V. Andrievsky, M.V. Kosevich, O.H. Vovk et al., On the production of an aqueous colloidal solution of fullerenes. J. Chem. Soc., Chem. Commun. 12, 1281 (1995)

    Article  Google Scholar 

  22. S. Deguchi, R.G. Alargova, K. Tsujii, Stable dispersions of fullerenes, C60 and C70, in water. Prep. Charact. Langmuir 17, 6013 (2001)

    Google Scholar 

  23. H.R. Kruyt (ed.), Colloid Science. vol. 1 Non-reversible systems (Moscow, Russia, 1955), 538p. (Russ. Transl.)

    Google Scholar 

  24. Y.I. Prylutskyy, S.S. Durov, L.A. Bulavin et al., Structure and thermophysical properties of fullerene C60 aqueous solutions. Int. J. Thermophys. 22, 943 (2001)

    Google Scholar 

  25. L. Bulavin, I. Adamenko, Y. Prylutskyy et al., Structure of fullerene C60 in aqueous solution. Phys. Chem. Chem. Phys. 2, 1627 (2000)

    Article  Google Scholar 

  26. G.V. Andrievsky, V.K. Klochkov, E.L. Karyakina et al., Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chem. Phys. Lett. 300, 392 (1999)

    Article  ADS  Google Scholar 

  27. U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev et al., Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller. Nanotub. Carbon Nanostruct. 23, 530 (2015)

    Google Scholar 

  28. Z. Meng, S.M. Hashmi, M. Elimelech, Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. J. Colloid Interface Sci. 392, 27 (2013)

    Article  ADS  Google Scholar 

  29. A.O. Khokhryakov, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin, Structural organization of colloidal solution of fullerene C60 in water by data of small angle neutron scattering. J. Mol. Liq. 127, 73 (2006)

    Article  Google Scholar 

  30. Y.I. Prylutskyy, V.I. Petrenko, O.I. Ivankov et al., On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30, 39–67 (2014)

    Google Scholar 

  31. J. Labille, J. Brant, F. Villieras et al., Affinity of C60 fullerenes with water. Fuller. Nanotub. Carbon Nanostruct. 14, 307 (2006)

    Article  ADS  Google Scholar 

  32. K.L. Chen, M. Elimelech, Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol. 43, 7270 (2009)

    Article  ADS  Google Scholar 

  33. J. Brant, H. Lecoanet, M.R. Wiesner, Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 7, 545 (2005)

    Article  ADS  Google Scholar 

  34. K.L. Chen, M. Elimelech, Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22, 10994 (2006)

    Article  Google Scholar 

  35. J.A. Brant, J. Labille, J.Y. Bottero, M.R. Wiesner, Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22, 3878 (2006)

    Article  Google Scholar 

  36. G.V. Andrievsky, V.K. Klochkov, A.B. Bordyuh, G.I. Dovbeshko, Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem. Phys. Lett. 364, 8 (2002)

    Article  ADS  Google Scholar 

  37. V.N. Bezmelnitsyn, A.V. Eletskii, M.V. Okun, E.V. Stepanov, Diffusion of aggregated fullerenes in solution. Phys. Scripta 53, 364 (1996)

    Article  ADS  Google Scholar 

  38. M. Wierzbicki, E. Sawosz, M. Grodzik et al., Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett. 8, 195 (2013)

    Article  ADS  Google Scholar 

  39. J. Labille, A. Masion, F. Ziarelli et al., Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. Langmuir 25, 11232 (2009)

    Article  Google Scholar 

  40. Y. Prilutski, S. Durov, L. Bulavin et al., Study of structure of colloidal particles of fullerenes in water solution. Mol. Cryst. Liq. Cryst. 324, 65 (1998)

    Article  Google Scholar 

  41. P. Scharff, K. Risch, L. Carta-Abelmann et al., Structure of C60 fullerene in water: spectroscopic data. Carbon 42, 1203 (2004)

    Article  Google Scholar 

  42. N.O. Mchedlov-Petrossyan, V.K. Klochkov, G.V. Andrievsky, Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc., Faraday Trans. 93, 4343 (1997)

    Article  Google Scholar 

  43. J.H. Walther, R.L. Jaffe, E.M. Kotsalis et al., Hydrophobic hydration of C60 and carbon nanotubes in water. Carbon 42, 1185 (2004)

    Article  Google Scholar 

  44. L. Li, D. Bedrov, G. Smith, A molecular-dynamics simulation study of solvent-induced repulsion between C60 fullerenes in water. J. Chem. Phys. 123, 204504 (2005)

    Article  ADS  Google Scholar 

  45. L. Li, D. Bedrov, G.D. Smith, Water-induced interactions between carbon Nanoparticles. J. Phys. Chem. B 110, 10509 (2006)

    Article  Google Scholar 

  46. C.I. Wang, C.C. Hua, S.A. Chen, Dynamic solvation shell and solubility of C60 in organic solvents. J. Phys. Chem. B 118, 9964 (2014)

    Article  Google Scholar 

  47. J. Choi, S.D. Snow, J.-H. Kim, S.S. Jang, Interaction of C60 with water: first-principles modeling and environmental implications. Environ. Sci. Technol. 49, 1529 (2015)

    Article  ADS  Google Scholar 

  48. A. Montellano, T. Da Ros, A. Bianco, M. Prato, Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035 (2011)

    Article  ADS  Google Scholar 

  49. Z.-Q. Li, Y.-M. Zhang, D.-S. Guo et al., Supramolecular assembly with multiple preorganised π-electronic. Cages Chem. Eur. J. 19, 96 (2013)

    Article  Google Scholar 

  50. D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J. Alvarez, Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. J. Environ. Sci. Tech. 40, 4360 (2006)

    Article  ADS  Google Scholar 

  51. M. Song, S. Liu, J. Yin, H. Wang, Interaction of human serum album and C60 aggregates in solution. Int. J. Mol. Sci. 12, 4964 (2011)

    Article  Google Scholar 

  52. M.P. Evstigneev, Hetero-association of aromatic molecules in aqueous solution. Int. Rev. Phys. Chem. 33, 229 (2014)

    Article  Google Scholar 

  53. V.N. Bezmel’nitsyn, A.V. Eletskii, M.V. Okun, Fullerenes in solutions. Phys. Usp. 41, 1091 (1998)

    Google Scholar 

  54. X. Zhao, A. Striolo, P.T. Cummings, C60 binds to and deforms nucleotides. Biophys. J. 89, 3856 (2005)

    Article  Google Scholar 

  55. Y.I. Prylutskyy, A.S. Buchelnikov, D.P. Voronin et al., C60 fullerene aggregation in aqueous solution. Phys. Chem. Chem. Phys. 15, 9351 (2013)

    Google Scholar 

  56. D.P. Voronin, A.S. Buchelnikov, V.V. Kostjukov et al., Evidence of entropically driven C60 fullerene aggregation in aqueous solution. J. Chem. Phys. 140, 104909 (2014)

    Article  ADS  Google Scholar 

  57. D. Hazafy, M.-V. Salvia, A. Mills et al., NMR analysis of Nile Blue (C. I. Basic Blue 12) and Thionine (C. I. 52000) in solution. Dyes Pigment. 88, 315 (2011)

    Google Scholar 

  58. A.A.H. Santiago, A.S. Buchelnikov, M.A. Rubinson et al., Shape-independent model (SHIM) approach for studying aggregation by NMR diffusometry. J. Chem. Phys. 142, 104202 (2015)

    Article  ADS  Google Scholar 

  59. M. Corti, V. Degiorgio, Quasi-elastic light scattering study of intermicellar interactions in aqueous sodium dodecyl sulfate solutions. J. Phys. Chem. 85, 711 (1981)

    Article  Google Scholar 

  60. D. Attwood, R. Blundell, V. Mosquera, Light scattering studies on the association of phenothiazine drugs in aqueous solutions of low ionic strength. J. Colloid Interface Sci. 157, 50 (1993)

    Article  ADS  Google Scholar 

  61. F. Lu, S.A. Haque, S.-T. Yang et al., Aqueous compatible fullerene—doxorubicin conjugates. J. Phys. Chem. C 113, 17768 (2009)

    Article  Google Scholar 

  62. J.-H. Liu, L. Cao, P.G. Luo et al., Fullerene-conjugated doxorubicin in cells. Appl. Mater. Interfaces 2, 1384 (2010)

    Article  Google Scholar 

  63. Y. Prylutskyy, A. Borowik, G. Gołuński et al., Biophysical characterization of the complexation of C60 fullerene with doxorubicin in a prokaryotic model. Mat-wiss u Werkstofftech 47, 92 (2016)

    Google Scholar 

  64. S. Prylutska, I. Grynyuk, O. Matyshevska et al., C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D 14, 333 (2014)

    Article  Google Scholar 

  65. G.B. Skamrova, I.V. Laponogov, A.S. Buchelnikov et al., Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur. Biophys. J. 43, 265 (2014)

    Article  Google Scholar 

  66. S. Prylutska, R. Panchuk, G. Gołuński et al., C60 fullerene enhances anticancer activity and overcomes tumor cells drug resistance. Nano Res. 10, 652 (2017)

    Article  Google Scholar 

  67. M.P. Evstigneev, A.S. Buchelnikov, D.P. Voronin et al., Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 14, 568 (2013)

    Article  Google Scholar 

  68. A.S. Buchelnikov, V.V. Kostyukov, M.P. Yevstigneev, Y.I. Prylutskyy, Mechanism of complexation of the phenothiazine dye methylene blue with fullerene C60. Russ. J. Phys. Chem. A 87, 662 (2013)

    Google Scholar 

  69. Y.I. Prylutskyy, M.P. Evstigneev, I.S. Pashkova et al., Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem Phys. 16, 23164 (2014)

    Google Scholar 

  70. Y.I. Prylutskyy, M.P. Evstigneev, V.V. Cherepanov et al., Structural organization of C60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res. 17, 45 (2015)

    Google Scholar 

  71. Y.I. Prylutskyy, V.V. Cherepanov, M.P. Evstigneev et al., Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys. 17, 26084 (2015)

    Google Scholar 

  72. J. Rohr, C. Hertweck, Comprehensive Natural Products II—Chemistry and Biology, eds. L. Mander, H.-W. Liu (Elsevier, Oxford, 2010), pp. 227–303

    Google Scholar 

  73. B. Ostash, A. Korynevska, R. Stoika, V. Fedorenko, Chemistry and biology of landomycins, an expanding family of polyketide natural products. Mini. Rev. Med. Chem. 9, 1040 (2009)

    Article  Google Scholar 

  74. M.K. Kharel, P. Pahari, M.D. Shepherd et al., Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 29, 264 (2012)

    Article  Google Scholar 

  75. L.V. Lehka, R.R. Panchuk, W. Berger et al., The role of reactive oxygen species in tumor cells apoptosis induced by Landomycin A. Ukr. Biochem. J. 87, 72 (2015)

    Article  Google Scholar 

  76. X. Yang, B. Fu, B. Yu, Total synthesis of Landomycin A, a potent antitumor angucycline antibiotic. J. Am. Chem. Soc. 133, 12433 (2011)

    Article  Google Scholar 

  77. M. Dalavalle, M. Leonzio, M. Calvaresi, F. Zerbetto, Explaining fullerene dispersion by using micellar solutions. Chem. Phys. Chem. 15, 2998 (2014)

    Article  Google Scholar 

  78. R. Injac, M. Perse, M. Cerne et al., Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 30, 1184 (2009)

    Article  Google Scholar 

  79. Y.I. Prylutskyy, V.V. Cherepanov, V.V. Kostjukov et al., Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Adv. 6, 81231 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was, in part, supported by Russian Science Fund (project no. 14-14-00328) and STCU project N6256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Prylutskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulavin, L.A., Prylutskyy, Y., Kyzyma, O., Evstigneev, M., Ritter, U., Scharff, P. (2018). Self-Organization of Pristine C60 Fullerene and its Complexes with Chemotherapy Drugs in Aqueous Solution as Promising Anticancer Agents. In: Bulavin, L., Chalyi, A. (eds) Modern Problems of Molecular Physics. Springer Proceedings in Physics, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-61109-9_1

Download citation

Publish with us

Policies and ethics