Skip to main content

The Role of Nitric Oxide from Neurological Disease to Cancer

  • Chapter
  • First Online:
Book cover Personalised Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1007))

Abstract

Until the beginning of the 1980s, nitric oxide (NO) was just a toxic molecule of a lengthy list of environmental pollutants such as cigarette smoke and smog. In fact, NO had a very bad reputation of being destroyer of ozone, suspected carcinogen and precursor of acid rain. However, by the early 1990s it was well recognized by the medical research community. Over the last two decades, the picture has been totally changed. Diverse lines of evidence have converged to show that this sometime poison is a fundamental player in the everyday business of the human body. NO activity was probed in the brain, arteries, immune system, liver, pancreas, uterus, peripheral nerves, lungs, and almost every system in the human body. NO is a major player in the cardiovascular system as it is involved in regulating blood pressure. In the CNS, it is involved in memory formation and the regulation of cerebral blood flow to ensure adequate supply of blood to the brain. Because NO is involved in many pathways, it has a role in several diseases related to modern life as hypertension, coronary heart diseases, Alzheimer’s Disease, stroke and cancer. This chapter focuses on the discussion of the role of NO in neurological diseases and cancer and how can this Janus-faced molecule play a role in the pathology and personalized treatment of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moncada S, Palmer RM, Higgs EA (1988) The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 12:365–372

    Article  CAS  PubMed  Google Scholar 

  2. Ignarro LJ (1989) Endothelium-derived nitric oxide: actions and properties. FASEB J 3:31–36

    CAS  PubMed  Google Scholar 

  3. Murad F (2011) Nitric oxide: the coming of the second messenger. Rambam Maimonides Med J 2:e0038

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas DD (2015) Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol 5:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  CAS  Google Scholar 

  6. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bian K, Murad F (2014) What is next in nitric oxide research? From cardiovascular system to cancer biology. Nitric Oxide 43:3–7

    Article  CAS  PubMed  Google Scholar 

  8. El-Sehemy A, Postovit L-M, Fu Y (2016) Nitric oxide signaling in human ovarian cancer: a potential therapeutic target. Nitric Oxide Biol Chem 54:30–37

    Article  CAS  Google Scholar 

  9. Adams L, Franco MC, Estevez AG (2015) Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240:711–717

    Article  CAS  Google Scholar 

  10. WHO (2006) Public health challenges WHO Library Cataloguing-in-Publication Data. World Health Organization

    Google Scholar 

  11. Thakur KT et al (2016) Chapter 5 Neurological disorders. Ment Neurol Subst Use Disord Dis Control Priorities, Third Ed 4:265

    Google Scholar 

  12. Jiang Z et al (2014) Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One 9:e93134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kudlow P, Cha DS, Carvalho AF, McIntyre RS (2016) Nitric oxide and major depressive disorder: pathophysiology and treatment implications. Curr Mol Med 16:206–215

    Article  CAS  PubMed  Google Scholar 

  14. Calabrese V et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  15. Benarroch EE (2011) Nitric oxide: a pleiotropic signal in the nervous system. Neurology 77:1568–1576

    Article  CAS  PubMed  Google Scholar 

  16. Pierrefiche O, Naassila M (2014) Endogenous nitric oxide but not exogenous no-donor S-nitroprussiate facilitates NMDA excitation in spontaneous rhythmic neonatal rat brainstem slice. Brain Res 1543:9–16

    Article  CAS  PubMed  Google Scholar 

  17. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  18. Dash PR et al (2007) Fas ligand-induced apoptosis is regulated by nitric oxide through the inhibition of fas receptor clustering and the nitrosylation of protein kinase Cε. Exp Cell Res 313:3421–3431

    Article  CAS  PubMed  Google Scholar 

  19. Benarroch EE (2011) NMDA receptors: recent insights and clinical correlations. Neurology 76:1750–1757

    Article  PubMed  Google Scholar 

  20. Um H-C, Jang J-H, Kim D-H, Lee C, Surh Y-J (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168

    Article  CAS  PubMed  Google Scholar 

  21. Knott AB, Bossy-Wetzel E (2009) Nitric oxide in halth and disease of the nervous system. Antioxid Redox Signal 11:541–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linares D et al (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26:12672–12681

    Article  CAS  PubMed  Google Scholar 

  24. Calabrese V et al (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    Article  CAS  PubMed  Google Scholar 

  25. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509

    Article  Google Scholar 

  26. Rivera DS, Inestrosa NC, Bozinovic F (2016) On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res 49:10

    Article  PubMed  PubMed Central  Google Scholar 

  27. Querfurth HW, LaFerla FM (2010) Alzheimer’s Disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  28. Berridge MJ (2014) Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J Physiol 592:281–293

    Article  CAS  PubMed  Google Scholar 

  29. Iqbal K, Liu F, Gong C-X (2014) Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol 88:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bird TD (2008) Genetic aspects of Alzheimer disease. Genet Med 10:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holmes C et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balez R, Ooi L (2016) Getting to NO Alzheimer’s disease: neuroprotection versus neurotoxicity mediated by nitric oxide. Oxidative Med Cell Longev 2016:3806157

    Article  Google Scholar 

  33. Guo H et al (2017) FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/CREB signaling and anti-inflammatory effects. Neuropharmacology 116:260–269

    Article  CAS  PubMed  Google Scholar 

  34. Franco MC et al (2015) Nitration of Hsp90 on tyrosine 33 regulates mitochondrial metabolism. J Biol Chem 290:19055–19066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guivernau B et al (2016) Amyloid- peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity. J Neurosci 36:11693–11703

    Article  CAS  PubMed  Google Scholar 

  36. Ryan SD et al (2013) Isogenic human iPSC parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakamura T et al (2015) Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 84:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu B et al (2014) Alpha-synuclein oligomerization in manganese-induced nerve cell injury in brain slices: a role of NO-mediated S-nitrosylation of protein disulfide isomerase. Mol Neurobiol 50:1098–1110

    Article  CAS  PubMed  Google Scholar 

  39. Uehara T et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  CAS  PubMed  Google Scholar 

  40. Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function – implications for Parkinson’s disease. J Neurochem 137:331–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho D-H, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67:3435–3447

    Article  CAS  PubMed  Google Scholar 

  42. Haun F et al (2013) S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in huntington’s disease. Antioxid Redox Signal 19:1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu J et al (2011) S-nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by -amyloid peptide. Proc Natl Acad Sci 108:14330–14335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura T, Cho D-H, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bae B-I et al (2006) Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci 103:3405–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu H et al (2014) Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 10:1072–1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tsang AHK et al (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 106:4900–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura T et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakamura T, Lipton SA (2016) Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci 37:73–84

    Article  CAS  PubMed  Google Scholar 

  50. Okamoto S, Lipton SA (2015) S-nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588–1593

    Article  CAS  PubMed  Google Scholar 

  51. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS (2015) The role of the nitric oxide pathway in brain injury and its treatment – from bench to bedside. Exp Neurol 263:235–243

    Article  CAS  PubMed  Google Scholar 

  52. Attwell D et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minamino T et al (1998) Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide. Circulation 98:1721–1727

    Article  CAS  PubMed  Google Scholar 

  54. Sabri M et al (2012) Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience 224:26–37

    Article  CAS  PubMed  Google Scholar 

  55. Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86:902–922

    Article  CAS  PubMed  Google Scholar 

  56. Kim JY, Park J, Chang JY, Kim S-H, Lee JE (2016) Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp Neurobiol 25:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garcia-Bonilla L et al (2014) Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol 193:2531–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ridnour LA et al (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8:1329–1337

    Article  CAS  PubMed  Google Scholar 

  59. Martínez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11:669–702

    Article  PubMed  CAS  Google Scholar 

  60. Oronsky B, Fanger GR, Oronsky N, Knox S, Scicinski J (2014) The implications of hyponitroxia in cancer. Transl Oncol 7:167–173

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15:277–289

    Article  CAS  PubMed  Google Scholar 

  62. Ridnour LA et al (2008) Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19:73–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vannini F, Kashfi K, Nath N (2015) The dual role of iNOS in cancer. Redox Biol 6:334–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Criss WE, Murad F, Kimura H, Morris HP (1976) Properties of guanylate cyclase in adult rat liver and several Morris hepatomas. Biochim Biophys Acta Enzymol 445:500–508

    Article  CAS  Google Scholar 

  65. Zhu H et al (2011) Restoring soluble guanylyl cyclase expression and function blocks the aggressive course of glioma. Mol Pharmacol 80:1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  67. Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150:5080–5085

    CAS  PubMed  Google Scholar 

  68. Messmer UK, Brüne B (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem J 319:299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chipuk JE et al (2004) Direct activation of bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science (80-.) 303:1010–1014

    Article  CAS  Google Scholar 

  70. Mihara M et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  71. Tovar C et al (2013) MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 73:2587–2597

    Article  CAS  PubMed  Google Scholar 

  72. Lujambio A et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Strasser A, Harris AW, Jacks T, Cory S (1994) DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79:329–339

    Article  CAS  PubMed  Google Scholar 

  74. Bicknell GR, Snowden RT, Cohen GM (1994) Formation of high molecular mass DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J Cell Sci 107:2483

    CAS  PubMed  Google Scholar 

  75. Xu W, Lliu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12:311–320

    Article  PubMed  Google Scholar 

  76. Jaiswal M, LaRusso N, Burgart L, Gores G (2000) Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60(1):184–190

    Google Scholar 

  77. Mocellin S, Bronte V, Nitti D (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27:317–352

    Article  CAS  PubMed  Google Scholar 

  78. Thomsen LL et al (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reveneau S et al (1999) Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptors. Lab Investig 79:1215–1225

    CAS  PubMed  Google Scholar 

  80. Vakkala M et al (2000) Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res 6:2408–2416

    CAS  PubMed  Google Scholar 

  81. Loibl S et al (2002) Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 95:1191–1198

    Article  CAS  PubMed  Google Scholar 

  82. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  CAS  PubMed  Google Scholar 

  83. Lim K-H, Ancrile BB, Kashatus DF, Counter CM (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2015) Caveolae and signalling in cancer. Nat Rev Cancer 15:225–237

    Article  CAS  PubMed  Google Scholar 

  85. Feron O, Saldana F, Michel JB, Michel T (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273:3125–3128

    Article  CAS  PubMed  Google Scholar 

  86. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett 345:50–54

    Article  CAS  PubMed  Google Scholar 

  87. Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60

    Article  CAS  PubMed  Google Scholar 

  88. Witkiewicz AK et al (2009) An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sloan EK et al (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goetz JG et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ayala G et al (2013) Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. J Pathol 231:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao X et al (2013) Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer. PLoS One 8:e59102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    Article  CAS  PubMed  Google Scholar 

  94. Choi B-M, Pae H-O, Jang SII, Kim Y-M, Chung H-T (2002) Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator endogenous NO production and NO donors. J Biochem Mol Biol 35:116–126

    CAS  PubMed  Google Scholar 

  95. Genaro AM, Hortelano S, Alvarez A, Martínez C, Boscá L (1995) Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 95:1884–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li J, Yang S, Billiar TR (2000) Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J Biol Chem 275:13026–13034

    Article  CAS  PubMed  Google Scholar 

  97. Kim Y et al (2000) Nitric oxide prevents tumor necrosis factor α–induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 32:770–778

    Article  CAS  PubMed  Google Scholar 

  98. Kim YM, Talanian RV, Billiar TR (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 272:31138–31148

    Article  CAS  PubMed  Google Scholar 

  99. Ceneviva GD et al (1998) Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am J Phys 275:L717–L728

    CAS  Google Scholar 

  100. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and epstein-barr virus reactivation. Cell 79:1137–1146

    Article  CAS  PubMed  Google Scholar 

  101. Hussain AR et al (2015) Xiap over-expression is a poor prognostic marker in breast cancer and can be targeted to induce efficient apoptosis. Cancer Res 75

    Google Scholar 

  102. Ji J et al (2015) XIAP maintains the characteristics of cancer stem cells and is a therapeutic target in nasopharyngeal carcinoma. Cancer Res 75

    Google Scholar 

  103. Gu L et al (2016) Discovery of dual inhibitors of MDM2 and XIAP for cancer treatment. Cancer Cell 30:623–636

    Article  CAS  PubMed  Google Scholar 

  104. Yang J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  105. Kim YM, Chung HT, Simmons RL, Billiar TR (2000) Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J Biol Chem 275:10954–10961

    Article  CAS  PubMed  Google Scholar 

  106. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  107. Kim Y-M, Bergonia H, Lancaster JR (1995) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett 374:228–232

    Article  CAS  PubMed  Google Scholar 

  108. Kim YM, de Vera ME, Watkins SC, Billiar TR (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411

    Article  CAS  PubMed  Google Scholar 

  109. Liu D et al (2000) Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS-/-). Diabetes 49:1116–1122

    Article  CAS  PubMed  Google Scholar 

  110. Rössig L et al (2000) Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem 275:25502–25507

    Article  PubMed  Google Scholar 

  111. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V (2013) Nitric oxide and cancer: a review. World J Surg Oncol 11:118

    Article  PubMed  Google Scholar 

  112. Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis. J Neuro-Oncol 50:139–148

    Article  CAS  Google Scholar 

  113. Jenkins DC et al (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A 92:4392–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morbidelli L, Donnini S, Ziche M (2004) Role of nitric oxide in tumor angiogenesis. Cancer Treat Res 117:155–167

    Article  CAS  PubMed  Google Scholar 

  115. Gallo O et al (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:587–596

    Article  CAS  PubMed  Google Scholar 

  116. Franchi A et al (2002) Inducible nitric oxide synthase expression in laryngeal neoplasia: correlation with angiogenesis. Head Neck 24:16–23

    Article  PubMed  Google Scholar 

  117. Hoeben A et al (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56.

    Google Scholar 

  118. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sappayatosok K et al (2009) Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation. Med Oral Patol Oral Cir Bucal 14:E319–E324

    PubMed  Google Scholar 

  120. Medeiros RM et al (2002) Outcome in prostate cancer: association with endothelial nitric oxide synthase Glu-Asp298 polymorphism at exon 7. Clin Cancer Res 8:3433–3437

    CAS  PubMed  Google Scholar 

  121. Ghilardi G et al (2003) Vascular invasion in human breast cancer is correlated to T-->786C polymorphism of NOS3 gene. Nitric Oxide Biol Chem 9:118–122

    Article  CAS  Google Scholar 

  122. Tatemichi M et al (2005) Increased risk of intestinal type of gastric adenocarcinoma in Japanese women associated with long forms of CCTTT pentanucleotide repeat in the inducible nitric oxide synthase promoter. Cancer Lett 217:197–202

    Article  CAS  PubMed  Google Scholar 

  123. Marangoni K, Araújo TG, Neves AF, Goulart LR (2008) The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression. BMC Cancer 8:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lee K-M et al (2009) Nitric oxide synthase gene polymorphisms and prostate cancer risk. Carcinogenesis 30:621–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao X, Wang J, Wang W, Wang M, Zhang J (2015) eNOS genetic polymorphisms and cancer risk a meta-analysis and a case–control study of breast cancer. Medicine (Baltimore) 94:1–10

    Google Scholar 

  126. Jiao J, Wu J, Huang D, Liu L (2015) Lack of association of the iNOS gene polymorphism with risk of cancer: a systematic review and Meta-Analysis. Sci Rep 5:9889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Koppula S, Kumar H, Kim IS, Choi D-K (2012) Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson’s disease. Mediat Inflamm 2012:823902

    Article  CAS  Google Scholar 

  128. Godínez-Rubí M, Rojas-Mayorquín AE, Ortuño-Sahagún D (2013) Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. Oxidative Med Cell Longev 2013:297357

    Article  CAS  Google Scholar 

  129. Atochin DN et al (2016) A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia–reperfusion injury in mice. Neurosci Lett 618:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Woodhouse L et al (2015) Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke. Stroke 46:3194–3201

    Article  CAS  PubMed  Google Scholar 

  131. Hickok JR, Thomas DD (2010) Nitric oxide and cancer therapy: the emperor has NO clothes. Curr Pharm Des 16:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kanayama N, Yamaguchi K, Nagasaki Y (2010) PEGylated polymer micelle-based nitric oxide (NO) photodonor with NO-mediated antitumor activity. Chem Lett 39:1008–1009

    Article  CAS  Google Scholar 

  133. Kim J, Yung BC, Kim WJ, Chen X (2016) Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy. J Control Release. doi:10.1016/j.jconrel.2016.12.026

  134. Chakrapani H et al (2008) Synthesis, nitric oxide release, and anti-leukemic activity of glutathione-activated nitric oxide prodrugs: structural analogues of PABA/NO, an anti-cancer lead compound. Bioorg Med Chem 16:2657–2664

    Article  CAS  PubMed  Google Scholar 

  135. Kiziltepe T et al (2007) JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dong R et al (2017) Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells. Biomed Pharmacother 88:367–373. doi:10.1016/j.biopha.2017.01.080

  137. Liu J et al (2009) Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells. Genomics 94:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hagos GK et al (2007) Colon cancer chemoprevention by a novel NO chimera that shows anti-inflammatory and antiproliferative activity in vitro and in vivo. Mol Cancer Ther 6:2230–2239

    Article  CAS  PubMed  Google Scholar 

  139. Gao J, Liu X, Rigas B (2005) Nitric oxide-donating aspirin induces apoptosis in human colon cancer cells through induction of oxidative stress. Proc Natl Acad Sci 102:17207–17212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aliev G et al (2013) Link between cancer and Alzheimer disease via oxidative stress induced by nitric oxide-dependent mitochondrial DNA overproliferation and deletion. Oxidative Med Cell Longev 2013:962984

    Article  CAS  Google Scholar 

  141. Stewart B, Wild CP (eds) (2014). International Agency for Research on Cancer, W World Cancer Rep 2014

    Google Scholar 

  142. International Agency for Research on Cancer and Cancer Research UK (2014) World cancer factsheet.

    Google Scholar 

  143. Fidler I, Timeline J (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  CAS  PubMed  Google Scholar 

  144. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Z. Gad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Maher, A., Abdel Rahman, M.F., Gad, M.Z. (2017). The Role of Nitric Oxide from Neurological Disease to Cancer. In: El-Khamisy, S. (eds) Personalised Medicine. Advances in Experimental Medicine and Biology, vol 1007. Springer, Cham. https://doi.org/10.1007/978-3-319-60733-7_5

Download citation

Publish with us

Policies and ethics