Skip to main content

Introduction to PDE-constrained optimisation

  • Chapter
  • First Online:
Mesh Dependence in PDE-Constrained Optimisation

Part of the book series: Mathematics of Planet Earth ((SBMPE-WCO))

Abstract

The use of computational models based on the numerical solution of partial differential equations (PDEs) to simulate physical processes is a powerful complement to physical experiments. Simulations can be undertaken to consider scenarios for which experiments are impossible, such as climate physics or the dynamics of black holes and galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] HansWilhelm Alt. Linear functional analysis: an application-oriented introduction. Springer, 2016.

    Google Scholar 

  • [2] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. 3rd Edition, Springer Science+Business Media, LLC, 2008.

    Google Scholar 

  • [3] J. Nocedal Byrd R. H. and R. B. Schnabel. “Representations of quasi-Newton Matrices and their Use in Limited Memory Methods”. In: Mathematical Programming 63 (1994), pp. 129–156.

    Google Scholar 

  • [4] Richard H Byrd et al. “A limited memory algorithm for bound constrained optimization”. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–1208.

    Google Scholar 

  • [5] Alexandru Cioaca, Mihai Alexe, and Adrian Sandu. “Second-order adjoints for solving PDE-constrained optimization problems”. In: Optimization Methods and Software 27.4-5 (2012), pp. 625–653. DOI: 10.1080/10556788.2011.610455.

  • [6] Timothy A Davis. Direct methods for sparse linear systems. Vol. 2. Siam, 2006.

    Google Scholar 

  • [7] Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Vol. 35. Springer Series in Computational Mathematics. Springer, 2011.

    Google Scholar 

  • [8] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. USA: Oxford University Press, 2005.

    Google Scholar 

  • [9] Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press (UK), 2014.

    Google Scholar 

  • [10] P. E. Farrell et al. “Automated derivation of the adjoint of high-level transient finite element programs”. In: SIAM Journal on Scientific Computing (2012). accepted.

    Google Scholar 

  • [11] Firedrake documentation. URL: http://firedrakeproject.org/documentation.html.

  • [12] Fernando Andr´es Gallego, John Jairo Quintero, and Juan Carlos Riano. “Convergence of the steepest descent method with line searches and uniformly convex objective in reflexive Banach spaces”. In: Mathematical Communications 20.2 (2015), pp. 161–173.

    Google Scholar 

  • [13] Michael Ghil and Paola Malanotte-Rizzoli. “Data Assimilation in Meteorology and Oceanography”. In: Advances in Geophysics. Ed. by Renata Dmowska and Barry Saltzman. Vol. 33. Elsevier, 1991, pp. 141–266. DOI: 10.1016/S0065-2687(08)60442-2.

  • [14] Lawrence M Graves. “Riemann integration and Taylor’s theorem in general analysis”. In: Transactions of the American Mathematical Society 29.1 (1927), pp. 163–177.

    Google Scholar 

  • [15] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of algorithmic differentiation. Second. Philadelphia, PA, USA: SIAM, 2008. ISBN: 0898714516.

    Google Scholar 

  • [16] P. Guillaume and M. Masmoudi. “Computation of high order derivatives in optimal shape design”. In: Numerische Mathematik 67.2 (1994), pp. 231–250.

    Google Scholar 

  • [17] M. D. Gunzburger. Perspectives in Flow Control and Optimization. Advances in Design and Control. Philadelphia, PA, USA: SIAM, 2003. ISBN: 089871527X.

    Google Scholar 

  • [18] M. Hinze and K. Kunisch. “Second Order Methods for Optimal Control of Time-Dependent Fluid Flow”. In: SIAM Journal on Control and Optimization 40.3 (2001), pp. 925–946. DOI: 10.1137/S0363012999361810.

    Google Scholar 

  • [19] M. Hinze et al. Optimization with PDE constraints. Vol. 23. Mathematical Modelling: Theory and Applications. Berlin, Heidelberg, New York: Springer-Verlag, 2009. ISBN: 978-1-4020-8838-4.

    Google Scholar 

  • [20] A. Jameson. “Aerodynamic design via control theory”. In: Journal of Scientific Computing 3.3 (1988), pp. 233–260.

    Google Scholar 

  • [21] Robert C Kirby. “From functional analysis to iterative methods”. In: SIAM review 52.2 (2010), pp. 269–293.

    Google Scholar 

  • [22] H.P. Langtangen and A. Logg. Solving PDEs in Python: The FEniCS Tutorial I. Simula SpringerBriefs on Computing. Springer International Publishing, 2017.

    Google Scholar 

  • [23] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book. Vol. 84. Springer Science & Business Media, 2012.

    Google Scholar 

  • [24] J. N. Lyness and C. B. Moler. “Numerical differentiation of analytic functions”. In: SIAM Journal on Numerical Analysis 4.2 (1967), pp. 202–210.

    Google Scholar 

  • [25] D. Menemenlis et al. “ECCO2: High resolution global ocean and sea ice data synthesis”. In: Mercator Ocean Quarterly Newsletter 31 (2008), pp. 13–21. DOI: 10.1007/s10236-006-0082-1.

  • [26] J. Nocedal and S. Wright. Numerical Optimization. Springer Science+Business Media, LLC, 2006.

    Google Scholar 

  • [27] J. Nocedal and S. J. Wright. Numerical optimization. 2nd ed. Berlin, Heidelberg, New-York: Springer-Verlag, 1999.

    Google Scholar 

  • [28] M Nordaas and Simon W. Funke. The Moola optimisation package. https://github.com/funsim/moola. 2016.

  • [29] Rene Pinnau and Michael Ulbrich. Optimization with PDE constraints. Vol. 23. Springer Science & Business Media, 2008.

    Google Scholar 

  • [30] R. L. Raffard and C. J. Tomlin. “Second order adjoint-based optimization of ordinary and partial differential equations with application to air traffic flow”. In: Proceedings of the 2005 American Control Conference. 2005, pp. 798–803. DOI: 10.1109/ACC.2005.1470057.

  • [31] Florian Rathgeber et al. “Firedrake: Automating the Finite Element Method by Composing Abstractions”. In: ACM Trans. Math. Softw. 43.3 (Dec. 2016), 24:1–24:27. ISSN: 0098-3500. DOI: 10.1145/2998441. URL: http://doi.acm.org/10.1145/2998441.

  • [32] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

    Google Scholar 

  • [33] Tobias Schwedes, David Ham, and Simon W Funke. Code for simulations in Chapter 1 of ResearchBrief. Dec. 2016. DOI: 10.5281/zenodo.223099. URL: https://doi.org/10.5281/zenodo.223099.

  • [34] Detlef Stammer and CarlWunsch. Computational requirements for ECCO in support of CLIVAR and GODAE. The ECCO Report Series 2. Boston, USA: Scripps Institution of Oceanography, Massachusetts Institute of Technology, 1999.

    Google Scholar 

  • [35] D. Stammer et al. “Ocean state estimation and prediction in support of oceanographic research”. In: Oceanography 2.13 (2000), pp. 51–56.

    Google Scholar 

  • [36] D. Thevenin and G. Janiga. Optimization and computational fluid dynamics. Berlin, Heidelberg, New-York: Springer-Verlag, 2008. DOI: 10.1007/978-3-540-72153-6.

  • [37] Philip Wolfe. “Convergence Conditions for Ascent Methods”. In: SIAM Review 11.2 (1969), pp. 226–235.

    Google Scholar 

  • [38] Margaret Wright. “The interior-point revolution in optimization: history, recent developments, and lasting consequences”. In: Bulletin of the American mathematical society 42.1 (2005), pp. 39–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schwedes .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Schwedes, T., Ham, D.A., Funke, S.W., Piggott, M.D. (2017). Introduction to PDE-constrained optimisation. In: Mesh Dependence in PDE-Constrained Optimisation. Mathematics of Planet Earth(). Springer, Cham. https://doi.org/10.1007/978-3-319-59483-5_1

Download citation

Publish with us

Policies and ethics