Skip to main content

A SpiNNaker Application: Design, Implementation and Validation of SCPGs

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Abstract

In this paper, we present the numerical results of the implementation of a Spiking Central Pattern Generator (SCPG) on a SpiNNaker board. The SCPG is a network of current-based leaky integrate-and-fire (LIF) neurons, which generates periodic spike trains that correspond to different locomotion gaits (i.e. walk, trot, run). To generate such patterns, the SCPG has been configured with different topologies, and its parameters have been experimentally estimated. To validate our designs, we have implemented them on the SpiNNaker board using PyNN and we have embedded it on a hexapod robot. The system includes a Dynamic Vision Sensor system able to command a pattern to the robot depending on the frequency of the events fired. The more activity the DVS produces, the faster that the pattern that is commanded will be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, Q., Liu, C., Zhang, J., Chen, Q.: Survey of locomotion control of legged robots inspired by biological concept. Sci. China Ser. F: Inf. Sci. 52(10), 1715–1729 (2009)

    Article  MATH  Google Scholar 

  2. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  3. Arena, P.: The central pattern generator: a paradigm for artificial locomotion. Soft. Comput. 4(4), 251–266 (2000)

    Article  MATH  Google Scholar 

  4. MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002)

    Article  Google Scholar 

  5. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 441–456 (2014)

    Article  Google Scholar 

  6. Lewis, M.A., Tenore, F., Etienne-Cummings, R.: CPG design using inhibitory networks. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 3682–3687. IEEE (2005)

    Google Scholar 

  7. Russell, A., Orchard, G., Etienne-Cummings, R.: Configuring of spiking central pattern generator networks for bipedal walking using genetic algorthms. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 1525–1528. IEEE (2007)

    Google Scholar 

  8. Espinal, A., Rostro-Gonzalez, H., Carpio, M., et al.: Quadrupedal robot locomotion: a biologically inspired approach and its hardware implementation. Comput. Intell. Neurosci. 2016, Article ID 5615618, 13 p. (2016). doi:10.1155/2016/5615618

  9. Rostro-Gonzalez, H., Cerna-Garcia, P.A., Trejo-Caballero, G., Garcia-Capulin, C.H., Ibarra-Manzano, M.A., Avina-Cervantes, J.G., Torres-Huitzil, C.: A CPG system based on spiking neurons for hexapod robot locomotion. Neurocomputing 170, 47–54 (2015)

    Article  Google Scholar 

  10. Espinal, A., Rostro-Gonzalez, H., Carpio, M., Guerra-Hernandez, E.I., Ornelas-Rodriguez, M., Sotelo-Figueroa, M.: Design of spiking central pattern generators for multiple locomotion gaits in hexapod robots by Christiansen grammar evolution. Front. Neurorobotics 10, 6 (2016). doi:10.3389/fnbot.2016.00006

  11. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  12. Grabowska, M., Godlewska, E., Schmidt, J., Daun-Gruhn, S.: Quadrupedal gaits in hexapod animals inter-leg coordination in free-walking adult stick insects. J. Exp. Biol. 215(24), 4255–4266 (2012). https://www.ncbi.nlm.nih.gov/pubmed/22972892

  13. Soula, H., Beslon, G., Mazet, O.: Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput. 18(1), 60–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abbott, L.F.: Lapicques introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5), 303–304 (1999)

    Article  Google Scholar 

  15. Davison, A., Brderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinf. 2, 11 (2009)

    Google Scholar 

  16. Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48(8), 1943–1953 (2013)

    Article  Google Scholar 

  17. Advanced Processor Technologies Research Group: Spinnaker home page. http://apt.cs.manchester.ac.uk/projects/SpiNNaker. Accessed 22 Jan 2016

  18. Dominguez-Morales, J.P., Jimenez-Fernandez, A., Rios-Navarro, A., Cerezuela-Escudero, E., Gutierrez-Galan, D., Dominguez-Morales, M.J., Jimenez-Moreno, G.: Multilayer spiking neural network for audio samples classification using SpiNNaker. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 45–53. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_6

    Chapter  Google Scholar 

  19. Rios-Navarro, A., Dominguez-Morales, J.P., Tapiador-Morales, R., Dominguez-Morales, M., Jimenez-Fernandez, A., Linares-Barranco, A.: A sensor fusion horse gait classification by a spiking neural network on SpiNNaker. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 36–44. Springer, Cham (2016). doi:10.1007/978-3-319-44778-0_5

    Chapter  Google Scholar 

  20. Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \times 128\) 120 dB 15 \(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)

    Article  Google Scholar 

  21. Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodríguez, F., Camuñas-Mesa, L., Berner, R., Rivas-Pérez, M., Delbruck, T., et al.: CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Trans. Neural Netw. 20(9), 1417–1438 (2009)

    Article  Google Scholar 

  22. Jiménez-Fernandez, A., Fuentes-del Bosh, J.L., Paz-Vicente, R., Linares-Barranco, A., Jiménez, G.: Neuro-inspired system for real-time vision sensor tilt correction. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1394–1397. IEEE (2010)

    Google Scholar 

  23. Linares-Barranco, A., Gómez-Rodríguez, F., Villanueva, V., Longinotti, L., Delbrück, T.: A USB3. 0 FPGA event-based filtering and tracking framework for dynamic vision sensors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2417–2420. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Spanish government grant (with support from the European Regional Development Fund) COFNET (TEC2016-77785-P). Also, this work has been supported by the Mexican government through the CONACYT project “Aplicación de la Neurociencia Computacional en el Desarrollo de Sistemas Roboticos Biologicamente Inspirados” (269798). The work of Juan P. Dominguez-Morales was supported by a Formación de Personal Universitario Scholarship from the Spanish Ministry of Education, Culture and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Dominguez-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cuevas-Arteaga, B. et al. (2017). A SpiNNaker Application: Design, Implementation and Validation of SCPGs. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics