Skip to main content

The Problem of Time

Quantum Mechanics Versus General Relativity

  • Book
  • © 2017

Overview

  • Addresses issues of central interest to fundamental theories of physics
  • An informed survey of the main candidate theories of quantum gravity
  • Starts gently, thus accessible to new graduate students
  • The book is a fruit of a major FQXi grant awarded to the author
  • Includes supplementary material: sn.pub/extras

Part of the book series: Fundamental Theories of Physics (FTPH, volume 190)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (60 chapters)

  1. Classical Problem of Time

Keywords

About this book

This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR).  Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity.  A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. 

This book shows moreoverthat eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study.  Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation.  Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond. 

Reviews

“This text examines the myriad challenges of developing quantum gravity theories by considering the conceptual development of time and background dependence. … Recommended. Graduate students, researchers, and faculty.” (E. Kincanon, Choice, Vol. 55 (11), July, 2018)

“From a very special perspective, this book presents a well-versed discussion of quantum gravity programs and, respectively, their problems. … the text begins with a ‘largely theory-free conceptual outline of time and clock concepts, alongside notions of space, length-measuring devices, spacetime and frames’. … it has enough room to trace the Problem of Time facets back to more basic and well-known temporal concepts.” (Horst-Heino von Borzeszkowski, zbMATH 1394.81007, 2018)

Authors and Affiliations

  • Department of Applied Mathematics and Theoretical Physics, University of Cambridge Centre for Mathematical Sciences, Cambridge, United Kingdom

    Edward Anderson

About the author

E. Anderson graduated from Cambridge with distinction in Part III Mathematics, and did a PhD in General Relativity at Queen Mary, University of London, before returning to Cambridge as a Research Fellow of Peterhouse and member of DAMTP.  E.A. has also occupied positions at the University of Alberta, Universidad Autónoma de Madrid and Université Paris 7 (with a FQXi large grant to study the titular Problem of Time).

Bibliographic Information

Publish with us