Skip to main content

Transport at Interfaces in Lipid Membranes and Enantiomer Separation

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Abstract

We study the dynamics and formation of differently ordered lateral phases of interfacial lipid layers for two types of lipid systems, a vesicle-supported bilayer and a Langmuir–Blodgett monolayer, both in experiment and by simulation. Similarly, we investigate the dynamics of objects embedded in a simpler interface given by an air–water surface and demonstrate the surface-acoustic-wave-actuated separation of enantiomers (chiral objects) on the surface of the carrier fluid. It turns out that the dynamics and the separation of the phases do not only depend on parameters such as temperature, mobilities and line tension but also on the mechanics of the lipid layers subjected to exterior forces as, for instance, compression, extensional and shear forces in film-balance experiments. Since the mechanical behavior of lipid layers is viscoelastic, we use a modeling approach based on the incompressible Navier–Stokes equations with a viscoelastic stress term and a capillary term, a convective Jeffrey (Oldroyd) equation of viscoelasticity, and the Cahn–Hilliard equation with a transport term. The numerical simulations are based on C 0-interior-penalty discontinuous-Galerkin methods for the Cahn–Hilliard equation. Model-validation results and the verification of the simulation results by experimental data are presented. The feasibility of enantiomer separation by surface-acoustic-wave-generated vorticity patterns is shown both experimentally and through numerical simulations. This technique is cost-effective and provides an extremely high time resolution of the dynamics of the separation process compared to more traditional approaches. The experimental setup is an enhanced Langmuir–Blodgett film balance with a surface-acoustic-wave-generated vorticity pattern of the fluid, where model enantiomers (custom-made photoresist particles) float on the surface of the carrier fluid. For the simulations, we propose a finite element immersed boundary method (FEIBM) for deformable enantiomers and a fictitious-domain approach based on a distributed Lagrangian multiplier finite element immersed boundary method (DLM-FEIBM) for rigid chiral objects, both of which lead to simulation results consistent with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelova, M., Soléau, S., Méléard, Ph., Faucon, F., Bothorel, P.: Preparation of giant vesicles by external AC electric fields. Kinetics and applications. In: Helm, C., Lösche, M., Möhwald, H. (eds.) Trends in Colloid and Interface Science, vol. VI. Progress in Colloid and Polymer Science, vol. 89, pp. 127–131. Springer, Berlin (1992)

    Google Scholar 

  2. Bagatolli, L.A., Gratton, E.: Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys. J. 78, 290–305 (2000)

    Article  Google Scholar 

  3. Baoukina, S., Mendez-Villuendas, E., Bennett, W., Tieleman, D.: Computer simulations of the phase separation in model membranes. Faraday Discuss. 161, 63–75 (2013)

    Article  Google Scholar 

  4. Baumgart, T., Hess, S., Webb, W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  5. Beleke-Maxwell, K., Franke, T., Hoppe, R.H.W., Linsenmann, C.: Numerical simulation of surface acoustic wave actuated enantiomer separation by the finite element immersed boundary method. Comput. Fluids 112, 50–60 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16, 285–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81, 491–501 (2003)

    Article  MathSciNet  Google Scholar 

  8. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MATH  Google Scholar 

  9. Boyer, F., Chupin, L., Fabrie, P.: Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model. Eur. J. Mech. B Fluids 23, 759–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brooks, C.F., Fuller, G.G., Frank, C.W., Robertson, C.R.: Transitions in monolayers at the air-water interface. Langmuir 5, 2450–2459 (1999)

    Article  Google Scholar 

  11. Burger, S., Fraunholz, T., Hoppe, R.H.W., Leirer, C., Wixforth, A., Peter, M.A., Franke, T.: Comparative study of the dynamics of lipid membrane phase decomposition in experiment and simulation. Langmuir 29(25), 7565–7570 (2013)

    Article  Google Scholar 

  12. Burger, S., Franke, T., Fraunholz, T., Hoppe, R.H.W., Peter, M.A., Wixforth, A.: Numerical simulation of surface acoustic wave actuated separation of rigid enantiomers by the fictitious domain Lagrange multiplier method. Comput. Methods Appl. Math. 15(3), 247–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Google Scholar 

  14. Chen, L.: Phase-field models for microstructural evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  15. Choi, S.Q., Steltenkamp, S., Zasadzinski, J.A., Squires, T.M.: Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat. Commun. 2, 312–316 (2011)

    Article  Google Scholar 

  16. Chorin, A.J.: The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bull. Am. Soc. 73, 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chupin, L.: Existence result for a mixture of non-Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete Continuous Dyn. Syst. B 3, 45–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chupin, L.: Existence results for the flow of viscoelastic fluids with an integral constitutive law. J. Math. Fluid Mech. 15, 783–806 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  20. Dietrich, C., Bagatolli, L., Volovyk, Z., Thompson, N., Levi, M., Jacobson, K., Gratton, E.: Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001)

    Article  Google Scholar 

  21. Ding, J., Warriner, H.E., Zasadzinski, J.A., Schwartz, D.K.: Magnetic needle viscometer for Langmuir monolayers. Langmuir 18, 2800–2806 (2002)

    Article  Google Scholar 

  22. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 324, 289–306 (1906)

    Article  MATH  Google Scholar 

  23. Elliott, C.: The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues, J. (ed.) Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics, vol. 88, pp. 35–74. Birkhauser, Basel (1989)

    Chapter  Google Scholar 

  24. Espinosa, G., López-Montero, I., Monroy, F., Langevin, D.: Shear rheology of lipid monolayers and insights on membrane fluidity. Proc. Natl. Acad. Sci. 108, 6008–6013 (2011)

    Article  Google Scholar 

  25. Fernandéz-Cara, E., Guillén, F., Ortega, R.R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26, 1–26 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Filippov, A., Orädd, G., Lindblom, G.: Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys. J. 86, 891–896 (2004)

    Article  Google Scholar 

  27. Franke, T., Hoppe, R.H.W., Linsenmann, C., Schmidt, L., Willbold, C.: Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows. Comput. Vis. Sci. 14, 167–180, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fraunholz, T.: Transport at interfaces in lipid membranes and enantiomer separation. PhD dissertation, University of Augsburg, Germany, 2014

    Google Scholar 

  29. Fraunholz, T., Hoppe, R.H.W., Peter, M.A.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the biharmonic problem. J. Numer. Math. 23, 317–330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gordon, R.J., Showalter, W.R.: Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions. Trans. Soc. Rheol. 16, 79–97 (1972)

    Article  MATH  Google Scholar 

  32. Guth, E., Simha, R.: Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die Viskosität von Kugelsuspensionen. Colloid Polym. Sci. 74, 266–275 (1936)

    Google Scholar 

  33. Helm, C., Möhwald, H., Kjaer, K., Als-Nielsen, J.: Phospholipid monolayers between fluid and solid states. Biophys. J. 52, 381–390 (1987)

    Article  Google Scholar 

  34. Hernandez, C.J., Mason, T.G.: Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477–4480 (2007)

    Article  Google Scholar 

  35. Hoppe, R.H.W., Linsenmann, C.: An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method. J. Comput. Phys. 231, 4676–4693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jacobson, K., Mouritsen, O., Anderson, R.: Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7–14 (2007)

    Article  Google Scholar 

  37. Jeffreys, H.: The Earth, Its Origin, History and Physical Constitution. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  38. Jørgensen, K., Mouritsen, O.: Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 95, 942–954 (1995)

    Article  Google Scholar 

  39. Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  40. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., Schwille, P.: Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28109–28115 (2003)

    Article  Google Scholar 

  41. Krägel, J., Kretzschmar, G., Li, J.B., Loglio, G., Miller, R., Möhwald, H.: Surface rheology of monolayers. Thin Solid Films 284–285, 361–364 (1996)

    Article  Google Scholar 

  42. Krüger, P., Lösche, M.: Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces. Phys. Rev. E 62, 7031–7043 (2000)

    Article  Google Scholar 

  43. Kostur, M., Schindler, M., Talkner, P., Hänggi, P.: Chiral separation in microflows. Phys. Rev. Lett. 96, 014502-1–014502-4 (2006)

    Google Scholar 

  44. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1999)

    Google Scholar 

  45. Letherish, W.: The mechanical behavior of Bitumen. J. Soc. Chem. Ind. 59, 1–26 (1940)

    Google Scholar 

  46. Li, P.C.H.: Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery. CRC Press, Boca Raton (2006)

    Google Scholar 

  47. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian fluids. Chinese Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Marcos, Fu, H.C., Powers, T.R., Stocker, R.: Separation of microscale chiral objects by shear flow. Phys. Rev. Lett. 102, 158103-1–158103-4 (2009)

    Google Scholar 

  49. Miller, A., Möhwald, H.: Diffusion limited growth of crystalline domains in phospholipid monolayers. J. Chem. Phys. 86, 4258–4265 (1987)

    Article  Google Scholar 

  50. Miller, A., Knol, W., Möhwald, H.: Fractal growth of crystalline phospholipid domains in monomolecular layers. Phys. Rev. Lett. 56, 2633–2638 (1986)

    Article  Google Scholar 

  51. Möhwald, H.: Phospholipid monolayers. In: Lipowsky, R., Sackmann, E. (eds.) Handbook of Biological Physics, vol. 1, pp. 161–211. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  52. Novick-Cohen, A.: The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)

    MathSciNet  MATH  Google Scholar 

  53. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. A 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  54. Orädd, G., Westerman, P., Lindblom, G.: Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study. Biophys. J. 89, 315–320 (2005)

    Article  Google Scholar 

  55. Pichot, R., Watson, R.L., Norton, I.T.: Phospholipids at the interface: current trends and challenges. Int. J. Mol. Sci. 14, 11767–11794 (2013)

    Article  Google Scholar 

  56. Relini, A., Ciuchi, F., Rolandi, R.: Surface shear viscosity and phase transitions of monolayers at the air-water interface. J. Phys. II 5, 1209–1221 (1995)

    Google Scholar 

  57. Rowlinson, J., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982)

    Google Scholar 

  58. Sacchetti, M., Yu, H., Zografi, G.: In-plane steady shear viscosity of monolayers at the air/water interface and its dependence on free area. Langmuir 9, 2168–2171 (1993)

    Article  Google Scholar 

  59. Sadoughi, A.H., Lopez, J.M., Hirsa, A.H.: Transition from Newtonian to non-Newtonian surface shear viscosity of phospholipid monolayers. Phys. Fluids 25, 032107 (2013)

    Article  Google Scholar 

  60. Sickert, M., Rondelez, F.: Shear viscosity of Langmuir monolayers in the low-density limit. Phys. Rev. Lett. 90, 126104 (2003)

    Article  Google Scholar 

  61. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    Article  Google Scholar 

  62. Singer, S.J., Nicolson, J.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–735 (1972)

    Article  Google Scholar 

  63. Steppich, D., Griesbauer, J., Frommelt, T., Appelt, W., Wixforth, A., Schneider, M.F.: Thermomechanic-electrical coupling in phospholipid monolayers near the critical point. Phys. Rev. E 81, 061123 (2010)

    Article  Google Scholar 

  64. Temam, R.: Remark on the pressure boundary condition for the projection method. Theor. Comput. Fluid Mech. 3, 181–184 (1991)

    Article  MATH  Google Scholar 

  65. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publications, Providence, RI (2000)

    MATH  Google Scholar 

  66. Tremaine, S.: On the origin of irregular structure in Saturn’s rings. Astron. J. 125, 894–901 (2003)

    Article  Google Scholar 

  67. Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  68. Veatch, S., Keller, S.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002)

    Article  Google Scholar 

  69. Veatch, S., Keller, S.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003)

    Article  Google Scholar 

  70. Veatch, S., Keller, S.: Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta 1746, 172–185 (2005)

    Article  Google Scholar 

  71. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn-Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zener, C.: Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago (1948)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG Priority Program SPP 1506, by the German Cluster of Excellence “Nanosystems Initiative Munich (NIM)”, and by the NSF under grant DMS-1520886.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Franke or Malte A. Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Boyarkin, O. et al. (2017). Transport at Interfaces in Lipid Membranes and Enantiomer Separation. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_17

Download citation

Publish with us

Policies and ethics