Skip to main content

Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1–5 Na+, 0–5 Cl, and 1–5 GABA per transport cycle. Only the 3 Na+: 1 Cl: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alle H, Geiger JR. GABAergic spill-over transmission onto hippocampal mossy fiber boutons. J Neurosci. 2007;27:942–50.

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Káradóttir R, Attwell D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch. 2004a;449:132–42.

    Article  CAS  PubMed  Google Scholar 

  • Allen NJ, Rossi DJ, Attwell D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci. 2004b;24:3837–49.

    Article  CAS  PubMed  Google Scholar 

  • Angulo MC, Le Meur K, Kozlov AS, Charpak S, Audinat E. GABA, a forgotten gliotransmitter. Prog Neurobiol. 2008;86:297–303.

    Article  CAS  PubMed  Google Scholar 

  • Awapara J, Landua AJ, Fuerst R, Seale B. Free γ-aminobutyric acid in brain. J Biol Chem. 1950;187:35–9.

    CAS  PubMed  Google Scholar 

  • Barakat L, Bordey A. GAT-1 and reversible GABA transport in Bergmann glia in slices. J Neurophysiol. 2002;88:1407–19.

    CAS  PubMed  Google Scholar 

  • Bazemore A, Elliott KA, Florey E. Factor I and gamma-aminobutyric acid. Nature. 1956;178:1052–3.

    Article  CAS  PubMed  Google Scholar 

  • Belhage B, Hansen GH, Schousboe A. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA. Neuroscience. 1993;54:1019–34.

    Article  CAS  PubMed  Google Scholar 

  • Bernath S, Zigmond MJ. Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience. 1988;27:563–70.

    Article  CAS  PubMed  Google Scholar 

  • Bertram S, Cherubino F, Bossi E, Castagna M, Peres A. GABA reverse transport by the neuronal cotransporter GAT1: influence of internal chloride depletion. Am J Physiol Cell Physiol. 2011;301:C1064–73.

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Shi L, Javitch JA, Weinstein H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol. 2006;70:1630–42.

    Article  CAS  PubMed  Google Scholar 

  • Bicho A, Grewer C. Rapid substrate-induced charge movements of the GABA transporter GAT1. Biophys J. 2005;89:211–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedermann B, Bringmann A, Reichenbach A. High-affinity GABA uptake in retinal glial (Müller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia. 2002;39:217–28.

    Article  PubMed  Google Scholar 

  • Bismuth Y, Kavanaugh MP, Kanner BI. Tyrosine 140 of the γ-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J Biol Chem. 1997;272:16096–102.

    Article  CAS  PubMed  Google Scholar 

  • Blaustein MP, King AC. Influence of membrane potential on the sodium-dependent uptake of γ-aminobutyric acid by presynaptic nerve terminals: experimental observations and theoretical considerations. J Membr Biol. 1976;30:153–73.

    Article  CAS  PubMed  Google Scholar 

  • Boistel J, Fatt P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J Physiol Lond. 1958;144:176–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int. 1996;29:335–56.

    Article  CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL. Molecular heterogeneity of the γ-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem. 1992;267:21098–104.

    CAS  PubMed  Google Scholar 

  • Borden LA, Dhar TG, Smith KE, Branchek TA, Gluchowski C, Weinshank RL. Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Recept Channels. 1994;2:207–13.

    CAS  PubMed  Google Scholar 

  • Bragina L, Marchionni I, Omrani A, Cozzi A, Pellegrini-Giampietro DE, Cherubini E, Conti F. GAT-1 regulates both tonic and phasic GABAA receptor-mediated inhibition in the cerebral cortex. J Neurochem. 2008;105:1781–93.

    Article  CAS  PubMed  Google Scholar 

  • Bröer S, Gether U. The solute carrier 6 family of transporters. Br J Pharmacol. 2012;167:256–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busch W, Saier MH Jr. The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol. 2002;37:287–337.

    Article  CAS  PubMed  Google Scholar 

  • Cammack JN, Schwartz EA. Channel behavior in a γ-aminobutyrate transporter. Proc Natl Acad Sci U S A. 1996;93:723–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammack JN, Rakhilin SV, Schwartz EA. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron. 1994;13:949–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6 . Pflugers Arch. 2004;447:519–31.

    Google Scholar 

  • Cherubino F, Bertram S, Bossi E, Peres A. Pre-steady-state and reverse transport currents in the GABA transporter GAT1. Am J Physiol Cell Physiol. 2012;302:C1096–108.

    Article  CAS  PubMed  Google Scholar 

  • Chiu CS, Jensen K, Sokolova I, Wang D, Li M, Deshpande P, Davidson N, Mody I, Quick MW, Quake SR, Lester HA. Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci. 2002;22:10251–66.

    CAS  PubMed  Google Scholar 

  • Chiu CS, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci. 2005;25:3234–45.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen B, Meinild AK, Jensen AA, Brauner-Osborne H. Cloning and characterization of a functional human γ-aminobutyric acid (GABA) transporter, human GAT-2. J Biol Chem. 2007;282:19331–41.

    Article  CAS  PubMed  Google Scholar 

  • Clark JA, Amara SG. Stable expression of a neuronal γ-aminobutyric acid transporter, GAT-3, in mammalian cells demonstrates unique pharmacological properties and ion dependence. Mol Pharmacol. 1994;46:550–7.

    CAS  PubMed  Google Scholar 

  • Clark JA, Deutch AY, Gallipoli PZ, Amara SG. Functional expression and CNS distribution of a β-alanine-sensitive neuronal GABA transporter. Neuron. 1992;9:337–48.

    Article  CAS  PubMed  Google Scholar 

  • Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A. Structure-activity relationship and pharmacology of γ-aminobutyric acid (GABA) transport inhibitors. Adv Pharmacol. 2006;54:265–84.

    Article  CAS  PubMed  Google Scholar 

  • Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev. 2004;45:196–212.

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Melone M, Fattorini G, Bragina L, Ciappelloni S. A role for GAT-1 in presynaptic GABA homeostasis? Front Cell Neurosci. 2011;5:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis DR, Phillis JW. gamma-Amino-n-butyric acid and spinal synaptic transmission. Nature. 1958;182:323.

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO. GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology. 2000;39:2399–407.

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO. Inhibition of γ-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol. 2003;479:127–37.

    Article  CAS  PubMed  Google Scholar 

  • Dalby NO, Thomsen C, Fink-Jensen A, Lundbeck J, Søkilde B, Man CM, Sørensen PO, Meldrum B. Anticonvulsant properties of two GABA uptake inhibitors NNC 05-2045 and NNC 05-2090, not acting preferentially on GAT-1. Epilepsy Res. 1997;28:51–61.

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Korn SJ. γ-Aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol Lond. 1985;366:387–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A. Cl homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol Lond. 2013;591:3901–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott KA, van Gelder NM. Occlusion and metabolism of γ-aminobutyric acid by brain tissue. J Neurochem. 1958;3:28–40.

    Article  CAS  PubMed  Google Scholar 

  • Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J Biol Chem. 1997;272:27230–8.

    Article  CAS  PubMed  Google Scholar 

  • Fesce R, Giovannardi S, Binda F, Bossi E, Peres A. The relation between charge movement and transport-associated currents in the rat GABA cotransporter rGAT1. J Physiol Lond. 2002;545:739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink-Jensen A, Suzdak PD, Swedberg MD, Judge ME, Hansen L, Nielsen PG. The γ-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol. 1992;220:197–201.

    Article  CAS  PubMed  Google Scholar 

  • Florey E. An inhibitory and an excitatory factor of mammalian central nervous system, and their action of a single sensory neuron. Arch Int Physiol. 1954;62:33–53.

    CAS  PubMed  Google Scholar 

  • Florey E, McLennan H. The effects of factor I and of gamma-aminobutyric acid on smooth muscle preparations. J Physiol Lond. 1959;145:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster IC, Loo DD, Eskandari S. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Phys. 1999;276:F644–9.

    CAS  Google Scholar 

  • Gadea A, López-Colomé AM. Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res. 2001;63:461–8.

    Article  CAS  PubMed  Google Scholar 

  • Gallo V, Patrizio M, Levi G. GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated. Glia. 1991;4:245–55.

    Article  CAS  PubMed  Google Scholar 

  • Gaspary HL, Wang W, Richerson GB. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol. 1998;80:270–81.

    CAS  PubMed  Google Scholar 

  • Giovannardi S, Fesce R, Bossi E, Binda F, Peres A. Cl affects the function of the GABA cotransporter rGAT1 but preserves the mutal relationship between transient and transport currents. Cell Mol Life Sci. 2003;60:550–6.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales AL, Lee W, Spencer SR, Oropeza RA, Chapman JV, Ku JY, Eskandari S. Turnover rate of the γ-aminobutyric acid transporter GAT1. J Membr Biol. 2007;220:33–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesfeld Z, Elliott KA. Factors that affect the binding and uptake of GABA by brain tissue. J Neurochem. 1971;18:683–90.

    Article  CAS  PubMed  Google Scholar 

  • Grossman TR, Nelson N. Effect of sodium lithium and proton concentrations on the electrophysiological properties of the four mouse GABA transporters expressed in Xenopus oocytes. Neurochem Int. 2003;43:431–43.

    Article  CAS  PubMed  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI. Cloning and expression of a rat brain GABA transporter. Science. 1990;249:1303–6.

    Article  CAS  PubMed  Google Scholar 

  • Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Töke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi A, Palkovits M, Kardos J. Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS One. 2009;4:e7153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Héja L, Nyitrai G, Kékesi O, Dobolyi A, Szabó P, Fiáth R, Ulbert I, Pál-Szenthe B, Palkovits M, Kardos J. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol. 2012;10:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilgemann DW, Lu CC. GAT1 (GABA:Na+:Cl) cotransport function. Database reconstruction with an alternating access model. J Gen Physiol. 1999;114:459–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson JS, Solís JM, Nicoll RA. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron. 1993;10:165–75.

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL, Neal MJ. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968;15:1141–9.

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol. 2003;90:2690–701.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI. Active transport of γ-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry. 1978;17:1207–11.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI. Transmembrane domain I of the γ-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes. J Biol Chem. 2003;278:3705–12.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Kifer L. Efflux of γ-aminobutyric acid by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry. 1981;20:3354–8.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem. 1987;22:1–38.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Zomot E. Sodium-coupled neurotransmitter transporters. Chem Rev. 2008;108:1654–68.

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Bendahan A, Radian R. Efflux and exchange of γ-aminobutyric acid and nipecotic acid catalysed by synaptic plasma membrane vesicles isolated from immature rat brain. Biochim Biophys Acta. 1983;731:54–62.

    Article  CAS  PubMed  Google Scholar 

  • Karakossian MH, Spencer SR, Gomez AQ, Padilla OR, Sacher A, Loo DD, Nelson N, Eskandari S. Novel properties of a mouse γ-aminobutyric acid transporter (GAT4). J Membr Biol. 2005;203:65–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanaugh MP, Arriza JL, North RA, Amara SG. Electrogenic uptake of γ-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J Biol Chem. 1992;267:22007–9.

    CAS  PubMed  Google Scholar 

  • Keros S, Hablitz JJ. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol. 2005;94:2073–85.

    Article  CAS  PubMed  Google Scholar 

  • Keynan S, Kanner BI. γ-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry. 1988;27:12–7.

    Article  CAS  PubMed  Google Scholar 

  • Keynan S, Suh YJ, Kanner BI, Rudnick G. Expression of a cloned γ-aminobutyric acid transporter in mammalian cells. Biochemistry. 1992;31:1974–9.

    Article  CAS  PubMed  Google Scholar 

  • Kinney GA. GAT-3 transporters regulate inhibition in the neocortex. J Neurophysiol. 2005;94:4533–7.

    Article  CAS  PubMed  Google Scholar 

  • Kinney GA, Spain WJ. Synaptically evoked GABA transporter currents in neocortical glia. J Neurophysiol. 2002;88:2899–908.

    Article  CAS  PubMed  Google Scholar 

  • Kirmse K, Kirischuk S, Grantyn R. Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons. Synapse. 2009;63:921–9.

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Magnusson AK. Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol. 2009;19:305–10.

    Article  CAS  PubMed  Google Scholar 

  • Krause S, Schwarz W. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1. Mol Pharmacol. 2005;68:1728–35.

    CAS  PubMed  Google Scholar 

  • Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63:585–640.

    Google Scholar 

  • Krnjevic K, Phillis JW. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol Lond. 1963;165:274–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krnjevic K, Schwartz S. The action of γ-aminobutyric acid on cortical neurones. Exp Brain Res. 1967;3:320–36.

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Edwards C. Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition. J Neurophysiol. 1958;21:589–610.

    CAS  PubMed  Google Scholar 

  • Kuhar MJ, Zarbin MA. Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds. J Neurochem. 1978;31:251–6.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Farley RA, Lester HA. An intermediate state of the γ-aminobutyric acid transporter GAT1 revealed by simultaneous voltage clamp and fluorescence. J Gen Physiol. 2000;115:491–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QR, Mandiyan S, Nelson H, Nelson N. A family of genes encoding neurotransmitter transporters. Proc Natl Acad Sci U S A. 1992a;89:6639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu QR, Nelson H, Mandiyan S, López-Corcuera B, Nelson N. Cloning and expression of a glycine transporter from mouse brain. FEBS Lett. 1992b;305:110–4.

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, López-Corcuera B, Mandiyan S, Nelson H, Nelson N. Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem. 1993;268:2106–12.

    CAS  PubMed  Google Scholar 

  • Livesay DR, Kidd PD, Eskandari S, Roshan U. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family. BMC Bioinf. 2007;8:397.

    Article  CAS  Google Scholar 

  • Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM. Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem. 2000;275:37414–22.

    Article  CAS  PubMed  Google Scholar 

  • Lu CC, Hilgemann DW. GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol. 1999a;114:429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu CC, Hilgemann DW. GAT1 (GABA:Na+:Cl) cotransport function. Kinetic studies in giant Xenopus oocyte membrane patches. J Gen Physiol. 1999b;114:445–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luccini E, Romei C, Di Prisco S, Raiteri M, Raiteri L. Ionic dysregulations typical of ischemia provoke release of glycine and GABA by multiple mechanisms. J Neurochem. 2010;114:1074–84.

    CAS  PubMed  Google Scholar 

  • MacAulay N, Zeuthen T, Gether U. Conformational basis for the Li+-induced leak current in the rat γ-aminobutyric acid (GABA) transporter-1. J Physiol Lond. 2002;544:447–58.

    Google Scholar 

  • Mackenzie B, Loo DD, Wright EM. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. J Membr Biol. 1998;162:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem. 2009;109(Suppl 1):139–44.

    Article  CAS  PubMed  Google Scholar 

  • Madsen KK, White HS, Schousboe A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther. 2010;125:394–401.

    Article  CAS  PubMed  Google Scholar 

  • Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS. Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABAA receptor agonist gaboxadol. J Pharmacol Exp Ther. 2011;338:214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mager S, Naeve J, Quick M, Labarca C, Davidson N, Lester HA. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron. 1993;10:177–88.

    Article  CAS  PubMed  Google Scholar 

  • Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA. Ion binding and permeation at the GABA transporter GAT1. J Neurosci. 1996;16:5405–14.

    CAS  PubMed  Google Scholar 

  • Mager S, Cao Y, Lester HA. Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes. Methods Enzymol. 1998;296:551–66.

    Article  CAS  PubMed  Google Scholar 

  • Martin DL. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1973;21:345–56.

    Article  CAS  PubMed  Google Scholar 

  • Martin DL, Smith AA 3rd. Ions and the transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1972;19:841–55.

    Article  CAS  PubMed  Google Scholar 

  • Matskevitch I, Wagner CA, Stegen C, Bröer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F. Functional characterization of the betaine/γ-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem. 1999;274:16709–16.

    Article  CAS  PubMed  Google Scholar 

  • Matthews E Jr, Rahnama-Vaghef A, Eskandari S. Inhibitors of the γ-aminobutyric acid transporter 1 (GAT1) do not reveal a channel mode of conduction. Neurochem Int. 2009;55:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinild AK, Forster IC. Using lithium to probe sequential cation interactions with GAT1. Am J Physiol Cell Physiol. 2012;302:C1661–75.

    Article  CAS  PubMed  Google Scholar 

  • Meinild AK, Loo DD, Skovstrup S, Gether U, Macaulay N. Elucidating conformational changes in the γ-aminobutyric acid transporter-1. J Biol Chem. 2009;284:16226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milanese M, Romei C, Usai C, Oliveri M, Raiteri L. A new function for glycine GlyT2 transporters: stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca2+-dependent anion channels. J Neurosci Res. 2014;92:398–408.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto K, Sato H, Yamamoto Y, Watanabe T, Suwaki H. Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia. 1997;38:966–74.

    Article  CAS  PubMed  Google Scholar 

  • Moscowitz JA, Cutler RW. Bidirectional movement of γ-aminobutyric acid in rat spinal cord slices. J Neurochem. 1980;35:1394–9.

    Article  CAS  PubMed  Google Scholar 

  • Nelson N. The family of Na+/Cl neurotransmitter transporters. J Neurochem. 1998;71:1785–803.

    Article  CAS  PubMed  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N. Cloning of the human brain GABA transporter. FEBS Lett. 1990;269:181–4.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJ, Sonnewald U, Braestrup C. Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol. 1991;196:257–66.

    Article  CAS  PubMed  Google Scholar 

  • O’Malley DM, Sandell JH, Masland RH. Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci. 1992;12:1394–408.

    PubMed  Google Scholar 

  • Obata K, Ito M, Ochi R, Sato N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on deiters neurones. Exp Brain Res. 1967;4:43–57.

    Article  CAS  PubMed  Google Scholar 

  • Omoto JJ, Maestas MJ, Rahnama-Vaghef A, Choi YE, Salto G Jr, Sanchez RV, Anderson CM, Eskandari S. Functional consequences of sulfhydryl modification of the γ-aminobutyric acid transporter 1 at a single solvent-exposed cysteine residue. J Membr Biol. 2012;245:841–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka M, Iversen LL, Hall ZW, Kravitz EA. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci U S A. 1966;56:1110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overstreet LS, Westbrook GL. Synapse density regulates independence at unitary inhibitory synapses. J Neurosci. 2003;23:2618–26.

    CAS  PubMed  Google Scholar 

  • Overstreet LS, Jones MV, Westbrook GL. Slow desensitization regulates the availability of synaptic GABAA receptors. J Neurosci. 2000;20:7914–21.

    CAS  PubMed  Google Scholar 

  • Pastuszko A, Wilson DF, Erecinska M. Energetics of γ-aminobutyrate transport in rat brain synaptosomes. J Biol Chem. 1982;257:7514–9.

    CAS  PubMed  Google Scholar 

  • Penmatsa A, Gouaux E. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters. J Physiol Lond. 2014;592:863–9.

    Article  CAS  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres A, Giovannardi S, Bossi E, Fesce R. Electrophysiological insights into the mechanism of ion-coupled cotransporters. News Physiol Sci. 2004;19:80–4.

    CAS  PubMed  Google Scholar 

  • Pin JP, Bockaert J. Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J Neurosci. 1989;9:648–56.

    CAS  PubMed  Google Scholar 

  • Radian R, Kanner BI. Stoichiometry of sodium- and chloride-coupled γ-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry. 1983;22:1236–41.

    Article  CAS  PubMed  Google Scholar 

  • Ransom CB, Tao W, Wu Y, Spain WJ, Richerson GB. Rapid regulation of tonic GABA currents in cultured rat hippocampal neurons. J Neurophysiol. 2013;109:803–12.

    Article  CAS  PubMed  Google Scholar 

  • Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett. 1995;373:229–33.

    Article  CAS  PubMed  Google Scholar 

  • Richerson GB, Wu Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol. 2003;90:1363–74.

    Article  CAS  PubMed  Google Scholar 

  • Richerson GB, Wu Y. Role of the GABA transporter in epilepsy. Adv Exp Med Biol. 2004;548:76–91.

    Article  CAS  PubMed  Google Scholar 

  • Risso S, DeFelice LJ, Blakely RD. Sodium-dependent GABA-induced currents in GAT1-transfected HeLa cells. J Physiol Lond. 1996;490(Pt 3):691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts E, Frankel S. γ-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem. 1950;187:55–63.

    CAS  PubMed  Google Scholar 

  • Romei C, Sabolla C, Raiteri L. GABA release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: roles of Ca2+ channels, Na+/Ca2+ exchangers and GAT1 transporter reversal. Neurochem Int. 2014;72:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F, Aubrey KR, Supplisson S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci. 2008;28:9755–68.

    Article  CAS  PubMed  Google Scholar 

  • Roux MJ, Supplisson S. Neuronal and glial glycine transporters have different stoichiometries. Neuron. 2000;25:373–83.

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G. Ion-coupled neurotransmitter transport: thermodynamic vs. kinetic determinations of stoichiometry. Methods Enzymol. 1998;296:233–47.

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch. 2014;466:25–42.

    Google Scholar 

  • Sacher A, Nelson N, Ogi JT, Wright EM, Loo DD, Eskandari S. Presteady-state and steady-state kinetics and turnover rate of the mouse γ-aminobutyric acid transporter (mGAT3). J Membr Biol. 2002;190:57–73.

    Article  CAS  PubMed  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD. TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34:D181–6.

    Article  CAS  PubMed  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C. The transporter classification database: recent advances. Nucleic Acids Res. 2009;37:D274–8.

    Article  CAS  PubMed  Google Scholar 

  • Salat K, Wieckowska A, Wieckowski K, Höfner GC, Kaminski J, Wanner KT, Malawska B, Filipek B, Kulig K. Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol Rep. 2012;64:817–33.

    Article  CAS  PubMed  Google Scholar 

  • Savtchenko L, Megalogeni M, Rusakov DA, Walker MC, Pavlov I. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nat Commun. 2015;6:6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Madsen KK, White HS. GABA transport inhibitors and seizure protection: the past and future. Future Med Chem. 2011;3:183–7.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Madsen KK, Barker-Haliski ML, White HS. The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res. 2014;39:1980–7.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz EA. Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science. 1987;238:350–5.

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A. Structure, function, and plasticity of GABA transporters. Front Cell Neurosci. 2014a;8:161.

    PubMed  PubMed Central  Google Scholar 

  • Scimemi A. Plasticity of GABA transporters: an unconventional route to shape inhibitory synaptic transmission. Front Cell Neurosci. 2014b;8:128.

    PubMed  PubMed Central  Google Scholar 

  • Singh SK, Pal A. Biophysical approaches to the study of LeuT, a prokaryotic homolog of neurotransmitter sodium symporters. Methods Enzymol. 2015;557:167–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skovstrup S, Taboureau O, Bräuner-Osborne H, Jørgensen FS. Homology modelling of the GABA transporter and analysis of tiagabine binding. ChemMedChem. 2010;5:986–1000.

    Article  CAS  PubMed  Google Scholar 

  • Skovstrup S, David L, Taboureau O, Jørgensen FS. A steered molecular dynamics study of binding and translocation processes in the GABA transporter. PLoS One. 2012;7:e39360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow H, Lowrie MB, Bennett JP. A postsynaptic GABA transporter in rat spinal motor neurones. Neurosci Lett. 1992;143:119–22.

    Article  CAS  PubMed  Google Scholar 

  • Solís JM, Nicoll RA. Postsynaptic action of endogenous GABA released by nipecotic acid in the hippocampus. Neurosci Lett. 1992;147:16–20.

    Article  PubMed  Google Scholar 

  • Soragna A, Bossi E, Giovannardi S, Pisani R, Peres A. Relations between substrate affinities and charge equilibration rates in the rat GABA cotransporter GAT1. J Physiol Lond. 2005;562:333–45.

    Article  CAS  PubMed  Google Scholar 

  • Strasberg P, Elliott KA. Further studies on the binding of γ-aminobutyric acid by brain. Can J Biochem. 1967;45:1795–807.

    Article  CAS  PubMed  Google Scholar 

  • Supplisson S, Roux MJ. Why glycine transporters have different stoichiometries. FEBS Lett. 2002;529:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia. 1995;36:612–26.

    Article  CAS  PubMed  Google Scholar 

  • Suzdak PD, Frederiksen K, Andersen KE, Sørensen PO, Knutsen LJ, Nielsen EB. NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol. 1992;224:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Swinyard EA, White HS, Wolf HH, Bondinell WE. Anticonvulsant profiles of the potent and orally active GABA uptake inhibitors SK&F 89976-A and SK&F 100330-A and four prototype antiepileptic drugs in mice and rats. Epilepsia. 1991;32:569–77.

    Article  CAS  PubMed  Google Scholar 

  • Tapia R, Arias C. Selective stimulation of neurotransmitter release from chick retina by kainic and glutamic acids. J Neurochem. 1982;39:1169–78.

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Gordon-Weeks PR. Calcium-independent γ-aminobutyric acid release from growth cones: role of gamma-aminobutyric acid transport. J Neurochem. 1991;56:273–80.

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Gähwiler BH. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol. 1992;67:1698–701.

    CAS  PubMed  Google Scholar 

  • Udenfriend S. Identification of γ-aminobutyric acid in brain by the isotope derivative method. J Biol Chem. 1950;187:65–9.

    CAS  PubMed  Google Scholar 

  • Varon S, Weinstein H, Baxter CF, Roberts E. Uptake and metabolism of exogenous γ-aminobutyric acid by subcellular particles in a sodium-containing medium. Biochem Pharmacol. 1965a;14:1755–64.

    Article  CAS  PubMed  Google Scholar 

  • Varon S, Weinstein H, Kakefuda T, Roberts E. Sodium-dependent binding of γ-aminobutyric acid by morphologically characterized subcellular brain particles. Biochem Pharmacol. 1965b;14:1213–24.

    Article  CAS  PubMed  Google Scholar 

  • Varon S, Weinstein H, Roberts E. Sodium-dependent metabolism and transport of γ-aminobutyric acid in subcellular particles from brain. Protoplasma. 1967;63:318–21.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Deken SL, Whitworth TL, Quick MW. Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1. Mol Pharmacol. 2003;64:905–13.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Goehring A, Wang KH, Penmatsa A, Ressler R, Gouaux E. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature. 2013;503:141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein H, Varon S, Muhleman DR, Roberts E. A carrier-mediated transfer model for the accumulation of 14C-γ-aminobutyric acid by subcellular brain particles. Biochem Pharmacol. 1965;14:273–88.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein H, Varon S, Roberts E. Evidence for a carrier-mediated transfer model for the accumulation of 14C-γ-aminobutyric acid by brain particles at zero degrees centigrade. Protoplasma. 1967;63:315–7.

    Article  CAS  PubMed  Google Scholar 

  • Weiss JN. The Hill equation revisited: uses and misuses. FASEB J. 1997;11:835–41.

    CAS  PubMed  Google Scholar 

  • Whitlow RD, Sacher A, Loo DD, Nelson N, Eskandari S. The anticonvulsant valproate increases the turnover rate of γ-aminobutyric acid transporters. J Biol Chem. 2003;278:17716–26.

    Article  CAS  PubMed  Google Scholar 

  • Willford SL, Anderson CM, Spencer SR, Eskandari S. Evidence for a revised ion/substrate coupling stoichiometry of GABA transporters. J Membr Biol. 2015;248:795–810.

    Article  CAS  PubMed  Google Scholar 

  • Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front Neural Circuits. 2013;7:188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Wang W, Richerson GB. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci. 2001;21:2630–9.

    CAS  PubMed  Google Scholar 

  • Wu Y, Wang W, Richerson GB. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol. 2003;89:2021–34.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang W, Richerson GB. The transmembrane sodium gradient influences ambient GABA concentration by altering the equilibrium of GABA transporters. J Neurophysiol. 2006;96:2425–36.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang W, Díez-Sampedro A, Richerson GB. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron. 2007;56:851–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Cai Y, Gong N, Chen C, Wu Y, Zhang-Nunes S, Wang Z, Xu T, Fei J. Homeostatic plasticity of GABAergic synaptic transmission in mice lacking GAT1. Biochem Biophys Res Commun. 2007;361:499–504.

    Article  CAS  PubMed  Google Scholar 

  • Xu YF, Cai YQ, Cai GQ, Jiang J, Sheng ZJ, Wang ZG, Fei J. Hypoalgesia in mice lacking GABA transporter subtype 1. J Neurosci Res. 2008;86:465–70.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature. 2005;437:215–23.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, Garcia-Perez A, Burg MB, Handler JS. Cloning of a Na+- and Cl-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 1992;267:649–52.

    CAS  PubMed  Google Scholar 

  • Yazulla S, Kleinschmidt J. Carrier-mediated release of GABA from retinal horizontal cells. Brain Res. 1983;263:63–75.

    Article  CAS  PubMed  Google Scholar 

  • Yunger LM, Fowler PJ, Zarevics P, Setler PE. Novel inhibitors of γ-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol Exp Ther. 1984;228:109–15.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC. The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol. 2012;302:F316–28.

    Article  CAS  PubMed  Google Scholar 

  • Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature. 2007;449:726–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the National Institute of General Medical Sciences (NIGMS) of the US National Institutes of Health (NIH), the California State University Program for Education and Research in Biotechnology (CSUPERB), and the California State University Agricultural Research Institute (CSU ARI).

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr Eskandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eskandari, S., Willford, S.L., Anderson, C.M. (2017). Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_5

Download citation

Publish with us

Policies and ethics