Skip to main content

Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles

  • Chapter
  • First Online:
Fibrous Proteins: Structures and Mechanisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

The structures of avian and reptilian epidermal appendages, such as feathers, claws and scales, have been modelled using X-ray diffraction and electron microscopy data, combined with sequence analyses. In most cases, a family of closely related molecules makes up the bulk of the appendage, and each of these molecules contains a central β-rich 34-residue segment, which has been identified as the principal component of the framework of the 3.4 nm diameter filaments. The N- and C-terminal segments form the matrix component of the filament/matrix complex. The 34-residue β-rich central domains occur in pairs, related by either a parallel dyad or a perpendicular dyad axis, and form a β-sandwich stabilized by apolar interactions. They are also twisted in a right-handed manner. In feather, the filaments are packed into small sheets and it is possible to determine their likely orientation within the sheets from the low-angle X-ray diffraction data. The physical properties of the various epidermal appendages can be related to the amino acid sequence and composition of defined molecular segments characteristic of the chains concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibardi L, Toni M (2007) Beta-keratins of reptilian scales share a central amino acid sequence termed core-box. Res J Biol Sci 2:329–339

    Google Scholar 

  • Alibardi L, Dalla Valle L, Toffolo V, Toni M (2006) Scale keratin in lizard epidermis reveals amino acid regions homologous with avian and mammalian proteins. Anat Rec 288A:734–752

    Article  CAS  Google Scholar 

  • Alibardi L, Dalla Valle L, Toni M (2009) Cell biology of adhesive setae in gecko lizards. Zoology 112:403–424

    Article  CAS  PubMed  Google Scholar 

  • Alexander NJ (1970) Comparison of alpha and beta keratins in reptiles. Z. Zellforsch. Mikrosk Anat 110:153–165

    CAS  Google Scholar 

  • Astbury WT, Marwick TC (1932) X-ray interpretation of the molecular structure of feather keratin. Nature (London) 130:309–310

    Article  CAS  Google Scholar 

  • Bear RS, Rugo HJ (1951) The results of X-ray diffraction studies on keratin fibers. Ann N Y Acad Sci 53:627–648

    Article  CAS  PubMed  Google Scholar 

  • Calvaresi M, Eckhart L, Alibardi L (2016) The molecular organization of the beta-sheet region in corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments. J Struct Biol 194:282–291

    Article  CAS  PubMed  Google Scholar 

  • Chothia C, Finkelstein AV (1990) The classification and origins of protein folding patterns. Annu Rev Biochem 57:1007–1039

    Article  Google Scholar 

  • Chou K (2000) Prediction of tight turns and their types in proteins. Anal Biochem 286:1–16

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Toffolo V, Belvedere P, Alibardi L (2005) Isolation of a mRNA encoding a glycine-proline-rich β-keratin expressed in the regenerating epidermis of lizard. Dev Dyn 234:934–947

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Nardi A, Belvedere P, Toni M, Alibardi L (2007a) β-Keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. Dev. Dynamics 236:1939–1953

    Article  CAS  Google Scholar 

  • Dalla Valle L, Nardi A, Toffolo V, Niero C, Toni M, Alibardi L (2007b) Cloning and characterization of scale β-keratins in the differentiating epidermis of geckoes show they are glycine-proline-serine-rich proteins with a central motif homologous to avian keratins. Dev Dyn 236:374–388

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Nardi A, Toni M, Alibardi L (2009a) Beta-keratins of turtle shell comprise small glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat 214:284–300

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L (2009b) β-keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J Exp Zool (Mol Dev Evol) 312B:42–57

    Article  CAS  Google Scholar 

  • Dalla Valle L, Nardi GB, Bonazza G, Zuccal C, Emera D, Alibardi L (2010) Forty keratin-associated β-proteins (β-proteins) form the hard layers of scales, claws, adhesive pads in the green anole lizard, Anolis carolinensis. J Exp Zool 314B:11–32

    Article  CAS  Google Scholar 

  • Filshie BK, Rogers GE (1962) An electron microscope study of the fine structure of feather keratin. J Cell Biol 13:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filshie BK, Rogers GE, Fraser RDB, MacRae TP (1964) X-ray diffraction and electron-microscope observations on soluble derivatives of feather keratin. Biochem J 92:18–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser RDB, MacRae TP (1959) Molecular organization in feather keratin. J Mol Biol 1:387–397

    Article  CAS  Google Scholar 

  • Fraser RDB, MacRae TP (1963) Structural organization in feather keratin. J Mol Biol 7:272–280

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, MacRae TP (1976) The molecular structure of feather keratin. In: Proceedings of the 16th international ornithological congress, Canberra 443–451

    Google Scholar 

  • Fraser RDB, Parry DAD (1996) The molecular structure of reptilian keratin. Int J Biol Macromol 19:207–211

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2008) Molecular packing in the feather keratin filament. J Struct Biol 162:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2011a) The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins. J Struct Biol 173:391–405

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2011b) The structural basis of the two-dimensional net pattern observed in the X-ray diffraction pattern of avian keratin. J Struct Biol 176:340–349

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2014) Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties. J Struct Biol 188:213–224

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Suzuki E (1965) Polypeptide chain conformation in feather keratin. J Mol Biol 14:279–282

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, MacRae TP, Parry DAD, Suzuki E (1971) The structure of feather keratin. Polymer 12:35–56

    Article  CAS  Google Scholar 

  • Greenwold MJ, Sawyer RH (2010) Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol 10:148–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregg K, Wilton SD, Parry DAD, Rogers GE (1984) A comparison of genomic coding sequences for feather and scale keratins: structural and evolutionary implications. EMBO J 3:175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallahan DL, Keiper-Hrynko NM, Shang TQ, Ganzke TS, Toni M, Dalla Valle L, Alibardi L (2009) Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta keratins. J Exp Zool 312B:58–73

    Article  CAS  Google Scholar 

  • Inglis AS, Gillespie MJ, Roxborough CM, Whitaker LA, Casagranda F (1987) In: L’Italien JL (ed) Proteins, structure and function. Plenum, New York, pp 757–764

    Google Scholar 

  • Kister AE, Finkelstein AV, Gelfand IM (2002) Common features in structures and sequences of sandwich-like proteins. Proc Natl Acad Sci U S A 99:14137–14141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klug A, Crick FHC, Wyckoff HW (1958) Diffraction by helical structures. Acta Cryst 11:199–213

    Article  CAS  Google Scholar 

  • Landmann L (1979) Keratin formation and barrier mechanisms in the epidermis of Natrix natrix (Reptilia, serpentes): an ultrastructural study. J Morphol 162:93–126

    Article  Google Scholar 

  • Levitt M, Perutz MF (1988) Aromatic rings act as hydrogen-bond acceptors. J Mol Biol 201:751–754

    Article  CAS  PubMed  Google Scholar 

  • Maderson PFA, Flaxman BA, Roth SI, Szabo G (1972) Ultrastructural contribution to the identification of cell types in the lizard epidermal generation. J Morphol 136:191–209

    Article  CAS  PubMed  Google Scholar 

  • McGaughey GB, Gagne M, Rappe AK (1998) π-Stacking interactions alive and well in proteins. J. Biol Chem 273:15458–15463

    Article  CAS  Google Scholar 

  • O’Donnell IJ (1973) The complete amino acid sequence of a feather keratin from emu (Dromaius novae-hollandiae). Aust J Biol Sci 26:415–437

    Article  PubMed  Google Scholar 

  • O’Donnell IJ, Inglis AS (1974) Amino acid sequence of a feather keratin from silver gull (Larus novae-hollandiae) and comparison with one from emu (Dromaius novae-hollandiae). Aust J Biol Sci 27:369–382

    Article  PubMed  Google Scholar 

  • Rest JS, Ast JC, Austin CC, Wadell PJ, Tibbetts EA, Hay JM, Mindell DP (2003) Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol 29:289–297

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99:2754–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudall KM (1947) X-ray studies of the distribution of protein chain types in the vertebrate epidermis. Biochim Biophys Acta 1:549–562

    Article  CAS  Google Scholar 

  • Sawyer RH, Glenn T, French JO, Mays B, Shames RB, Barnes GL, Rhodes W, Ishikawa Y (2000) The expression of beta (β) keratins in the epidermal appendages of reptiles and birds. Am Zool 40:530–539

    CAS  Google Scholar 

  • Schorr R, Krimm S (1961) Studies on the structure of feather keratin I. X-ray diffraction studies and other experimental data. Biophys J 1:467–487

    Article  Google Scholar 

  • Steinert PM, Mack JW, Korge BP, Gan S-Q, Haynes SR, Steven AC (1991) Glycine loops in proteins: their occurrence in certain intermediate filament chains, loricrins and single-stranded RNA binding proteins. Int J Biol Macromol 13:130–139

    Article  CAS  PubMed  Google Scholar 

  • Stewart M (1977) The structure of chicken scale keratin. J Ultrastruct Res 60:27–33

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E (1973) Localization of beta-conformation in feather keratin. Aust J Biol Sci 26:435–437

    CAS  PubMed  Google Scholar 

  • Taylor AM, Bonser RHC, Farrent JW (2004) The influence of hydration on the tensile and compressive properties of avian keratinous tissues. J Mater Sci 39:939–942

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. D. Parry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fraser, R.D.B., Parry, D.A.D. (2017). Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_8

Download citation

Publish with us

Policies and ethics