Skip to main content

Mathematical Modeling of the DNA Double-Strand Break Repair in Mammalian and Human Cells

  • Chapter
  • First Online:
Genetics, Evolution and Radiation

Abstract

A numerical model is offered to simulate the major pathways of DNA double-strand break. It provides a possible mechanistic explanation of the basic regularities of DSB processing by means of the non-homologous end-joining (NHEJ), homologous recombination (HR), single-strand annealing (SSA) and two alternative end-joining pathways. The model reproduces the time-courses of radiation-induced fluorescent foci specific to particular repair processes. It was tested for a wide spectrum of radiations with different linear energy transfer values ranged from 0.2 to 236 keV/μm. Using the proposed approach, we have reproduced several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions. The results produced meet the hypothesis that the alternative end-joining pathways represented by micro-SSA and Alt-NHEJ can eliminate some amount of DSBs when classical NHEJ fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JA, Harper JV, Cucinotta FA, O’Neill P (2010) Participation of DNA-PKcs in DSB repair after exposure to high- and low-LET radiation. Radiat Res 174:195–205

    Article  CAS  PubMed  Google Scholar 

  • Asaithamby A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ (2008) Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Radiat Res 169:437–446

    Article  CAS  PubMed  Google Scholar 

  • Bastin M, St-Onge L, Bouchard L (1992) A mathematical model of homologous recombination in cultured cells. J Theor Biol 156:513–524

    Article  CAS  PubMed  Google Scholar 

  • Belov O, Krasavin E, Lyashko M, Batmunkh M, Sweilam N (2015) A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J Theor Biol 366:115–130

    Article  CAS  PubMed  Google Scholar 

  • Cucinotta FA, Nikjoo H, O’Neill P, Goodhead DT (2000) Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations. Int J Radiat Biol 76:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Cucinotta FA, Pluth JM, Anderson JA, Harper JV, O’Neill P (2008) Biochemical kinetics model of DSB repair and induction of γ-H2AX foci by non-homologous end joining. Radiat Res 169:214–222

    Article  CAS  PubMed  Google Scholar 

  • Friedland W, Jacob P, Kundrat P (2010) Stochastic simulation of DNA double- strand break repair by non-homologous end-joining based on track structure calculations. Radiat Res 173:677–688

    Article  CAS  PubMed  Google Scholar 

  • Friedland W, Jacob P, Kundrát P (2011a) Mechanistic simulation of radiation damage to DNA and its repair: on the track towards systems radiation biology modelling. Radiat Prot Dosim 143:542–548

    Article  CAS  Google Scholar 

  • Friedland W, Dingfelder M, Kundrat P, Jacob P (2011b) Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 711:28–40

    Article  CAS  PubMed  Google Scholar 

  • Goodhead DT (1985) Saturable repair models of radiation action in mammalian cells. Radiat Res 104:58–67

    Article  Google Scholar 

  • Harper JV, Anderson JA, O’Neill P (2010) Radiation induced DNA DSBs: contribution from stalled replication forks? DNA Repair 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Kiefer J (1988) A repair fixation model based on classical enzyme kinetics. In: Kiefer J (ed) Quantitative models in radiation biology. Springer, Berlin, pp 171–180

    Chapter  Google Scholar 

  • Moore S, Stanley FKT, Goodarzi AA (2014) The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation—no simple task. DNA Repair 17:64–73

    Article  CAS  PubMed  Google Scholar 

  • Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M, Jeggo PA (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30:1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taleei R (2013) Modelling and calculation of DNA damage and repair in mammalian cells induced by ionizing radiation of different quality. Doctoral thesis, Department of Oncology-Pathology, Karolinska Institutet. Stockholm

    Google Scholar 

  • Taleei R, Nikjoo H (2013) Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat Res 756:206–212

    Article  CAS  PubMed  Google Scholar 

  • Taleei R, Weinfeld M, Nikjoo H (2012) Single strand annealing mathematical model for double strand break repair. J Mol Eng Syst Biol 1:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Belov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Belov, O.V., Panina, M.S., Batmunkh, M., Sweilam, N. (2016). Mathematical Modeling of the DNA Double-Strand Break Repair in Mammalian and Human Cells. In: Korogodina, V., Mothersill, C., Inge-Vechtomov, S., Seymour, C. (eds) Genetics, Evolution and Radiation. Springer, Cham. https://doi.org/10.1007/978-3-319-48838-7_14

Download citation

Publish with us

Policies and ethics