Skip to main content

Circadian Rhythms in Diet-Induced Obesity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 960))

Abstract

The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe, H., S. Honma, and K.-I. Honma. 2007. Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 292: R607–R615. doi:10.1152/ajpregu.00331.2006.

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Galvan, G., C.-X. Yi, J. van der Vliet, J.H. Jhamandas, P. Panula, M. Angeles-Castellanos, M. Del Carmen Basualdo, C. Escobar, and R.M. Buijs. 2011. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proceedings of the National Academy of Sciences of the United States of America 108: 5813–5818. doi:10.1073/pnas.1015551108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamovich, Y., L. Rousso-Noori, Z. Zwighaft, A. Neufeld-Cohen, M. Golik, J. Kraut-Cohen, M. Wang, X. Han, and G. Asher. 2014. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metabolism 19: 319–330. doi:10.1016/j.cmet.2013.12.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando, H., H. Yanagihara, Y. Hayashi, Y. Obi, S. Tsuruoka, T. Takamura, S. Kaneko, and A. Fujimura. 2005. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146: 5631–5636. doi:10.1210/en.2005-0771.

    Article  CAS  PubMed  Google Scholar 

  • Antle, M.C., and R. Silver. 2005. Orchestrating time: Arrangements of the brain circadian clock. Trends in Neurosciences 28: 145–151. doi:10.1016/j.tins.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Antle, M.C., L.J. Kriegsfeld, and R. Silver. 2005. Signaling within the master clock of the brain: Localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25: 2447–2454. doi:10.1523/JNEUROSCI.4696-04.2005.

    Article  CAS  Google Scholar 

  • Antle, M.C., V.M. Smith, R. Sterniczuk, G.R. Yamakawa, and B.D. Rakai. 2009. Physiological responses of the circadian clock to acute light exposure at night. Reviews in Endocrine & Metabolic Disorders 10: 279–291. doi:10.1007/s11154-009-9116-6.

    Article  Google Scholar 

  • Antunes, L.C., R. Levandovski, G. Dantas, W. Caumo, and M.P. Hidalgo. 2010. Obesity and shift work: Chronobiological aspects. Nutrition Research Reviews 23: 155–168. doi:10.1017/S0954422410000016.

    Article  CAS  PubMed  Google Scholar 

  • Arble, D.M., J. Bass, A.D. Laposky, M.H. Vitaterna, and F.W. Turek. 2009. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring, Md.) 17: 2100–2102. doi:10.1038/oby.2009.264.

    Article  Google Scholar 

  • Asher, G., and U. Schibler. 2006. A CLOCK-less clock. Trends in Cell Biology 16: 547–549. doi:10.1016/j.tcb.2006.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Asher, G., D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel, R. Mostoslavsky, F.W. Alt, and U. Schibler. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317–328. doi:10.1016/j.cell.2008.06.050.

    Article  CAS  PubMed  Google Scholar 

  • Asher, G., H. Reinke, M. Altmeyer, M. Gutierrez-Arcelus, M.O. Hottiger, and U. Schibler. 2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142: 943–953. doi:10.1016/j.cell.2010.08.016.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, S.E., E.S. Maywood, J.E. Chesham, C. Wozny, C.S. Colwell, M.H. Hastings, and S.R. Williams. 2011. Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus. Journal of Biological Rhythms 26: 210–220. doi:10.1177/0748730411402810.

    Article  CAS  PubMed  Google Scholar 

  • Bando, H., T. Nishio, G.T.J. van der Horst, S. Masubuchi, Y. Hisa, and H. Okamura. 2007. Vagal regulation of respiratory clocks in mice. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27: 4359–4365. doi:10.1523/JNEUROSCI.4131-06.2007.

    Article  CAS  Google Scholar 

  • Barclay, J.L., J. Husse, B. Bode, N. Naujokat, J. Meyer-Kovac, S.M. Schmid, H. Lehnert, and H. Oster. 2012. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 7: e37150. doi:10.1371/journal.pone.0037150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnea, M., Z. Madar, and O. Froy. 2009. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150: 161–168. doi:10.1210/en.2008-0944.

    Article  CAS  PubMed  Google Scholar 

  • Baron, K.G., and K.J. Reid. 2014. Circadian misalignment and health. International Review of Psychiatry (Abingdon, England) 26: 139–154. doi:10.3109/09540261.2014.911149.

    Article  Google Scholar 

  • Barrenetxe, J., P. Delagrange, and J.A. Martínez. 2004. Physiological and metabolic functions of melatonin. Journal of Physiology and Biochemistry 60: 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Bass, J., and J.S. Takahashi. 2010. Circadian integration of metabolism and energetics. Science 330: 1349–1354. doi:10.1126/science.1195027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumeier, C., D. Kaiser, J. Heeren, L. Scheja, C. John, C. Weise, M. Eravci, M. Lagerpusch, G. Schulze, H.-G. Joost, R.W. Schwenk, and A. Schürmann. 2015. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochimica et Biophysica Acta 1851: 566–576. doi:10.1016/j.bbalip.2015.01.013.

    Article  CAS  PubMed  Google Scholar 

  • Bayon, V., D. Leger, D. Gomez-Merino, M.-F. Vecchierini, and M. Chennaoui. 2014. Sleep debt and obesity. Annals of Medicine 46: 264–272. doi:10.3109/07853890.2014.931103.

    Article  PubMed  Google Scholar 

  • Bechtold, D.A. 2008. Energy-responsive timekeeping. Journal of Genetics 87: 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Berthoud, H.-R. 2002. Multiple neural systems controlling food intake and body weight. Neuroscience and Biobehavioral Reviews 26: 393–428.

    Article  PubMed  Google Scholar 

  • Birketvedt, G.S., A. Geliebter, I. Kristiansen, Y. Firgenschau, R. Goll, and J.R. Florholmen. 2012. Diurnal secretion of ghrelin, growth hormone, insulin binding proteins, and prolactin in normal weight and overweight subjects with and without the night eating syndrome. Appetite 59: 688–692. doi:10.1016/j.appet.2012.07.015.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore, A.I.F., D. Meyre, J. Delplanque, V. Vatin, C. Lecoeur, M. Marre, J. Tichet, B. Balkau, P. Froguel, and A.J. Walley. 2009. A rare variant in the visfatin gene (NAMPT/PBEF1) is associated with protection from obesity. Obesity (Silver Spring, Md.) 17: 1549–1553. doi:10.1038/oby.2009.75.

    Article  CAS  Google Scholar 

  • Borengasser, S.J., F. Lau, P. Kang, M.L. Blackburn, M.J.J. Ronis, T.M. Badger, and K. Shankar. 2011. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning. PLoS One 6: e24068. doi:10.1371/journal.pone.0024068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borengasser, S.J., P. Kang, J. Faske, H. Gomez-Acevedo, M.L. Blackburn, T.M. Badger, and K. Shankar. 2014. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9: e84209. doi:10.1371/journal.pone.0084209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouskila, Y., and F.E. Dudek. 1993. Neuronal synchronization without calcium-dependent synaptic transmission in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America 90: 3207–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton, C. 2013. The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. The Journal of Endocrinology 216: R19–R31. doi:10.1530/JOE-12-0157.

    Article  CAS  PubMed  Google Scholar 

  • Buijs, R.M., F.A. Scheer, F. Kreier, C. Yi, N. Bos, V.D. Goncharuk, and A. Kalsbeek. 2006. Organization of circadian functions: Interaction with the body. Progress in Brain Research 153: 341–360. doi:10.1016/S0079-6123(06)53020-1.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, O.M., M. Pavlova, E.W. Reid, W. Wang, D.C. Simonson, and G.K. Adler. 2010. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 59: 2126–2133. doi:10.2337/db09-0699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera de León, A., D. Almeida González, A. González Hernández, S. Domínguez Coello, J. Marrugat, J. Juan Alemán Sánchez, B. Brito Díaz, I. Marcelino Rodríguez, and M. del C.R. Pérez. 2014. Relationships between serum resistin and fat intake, serum lipid concentrations and adiposity in the general population. Journal of Atherosclerosis and Thrombosis 21: 454–462.

    Article  PubMed  Google Scholar 

  • Cakir, I., M. Perello, O. Lansari, N.J. Messier, C.A. Vaslet, and E.A. Nillni. 2009. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One 4: e8322. doi:10.1371/journal.pone.0008322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantó, C., Z. Gerhart-Hines, J.N. Feige, M. Lagouge, L. Noriega, J.C. Milne, P.J. Elliott, P. Puigserver, and J. Auwerx. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056–1060. doi:10.1038/nature07813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantó, C., L.Q. Jiang, A.S. Deshmukh, C. Mataki, A. Coste, M. Lagouge, J.R. Zierath, and J. Auwerx. 2010. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism 11: 213–219. doi:10.1016/j.cmet.2010.02.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao, R., B. Lee, H.-Y. Cho, S. Saklayen, and K. Obrietan. 2008. Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Molecular and Cellular Neurosciences 38: 312–324. doi:10.1016/j.mcn.2008.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, R., B. Robinson, H. Xu, C. Gkogkas, A. Khoutorsky, T. Alain, A. Yanagiya, T. Nevarko, A.C. Liu, S. Amir, and N. Sonenberg. 2013. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79: 712–724. doi:10.1016/j.neuron.2013.06.026.

    Article  CAS  PubMed  Google Scholar 

  • Cappuccio, F.P., F.M. Taggart, N.-B. Kandala, A. Currie, E. Peile, S. Stranges, and M.A. Miller. 2008. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31: 619–626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro, B.T.S., and J.F. Araujo. 2012. Food entrainment: Major and recent findings. Frontiers in Behavioral Neuroscience 6: 83. doi:10.3389/fnbeh.2012.00083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas-Agustench, P., D.K. Arnett, C.E. Smith, C.-Q. Lai, L.D. Parnell, I.B. Borecki, A.C. Frazier-Wood, M. Allison, Y.-D.I. Chen, K.D. Taylor, S.S. Rich, J.I. Rotter, Y.-C. Lee, and J.M. Ordovás. 2014. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two US populations. Journal of the Academy of Nutrition and Dietetics 114: 1954–1966. doi:10.1016/j.jand.2014.03.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalkiadaki, A., and L. Guarente. 2012. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nature Reviews. Endocrinology 8: 287–296. doi:10.1038/nrendo.2011.225.

    Article  CAS  PubMed  Google Scholar 

  • Challet, E. 2010. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. Journal of Comparative Physiology. B 180: 631–644. doi:10.1007/s00360-010-0451-4.

    Article  Google Scholar 

  • ———. 2013. Circadian clocks, food intake, and metabolism. Progress in Molecular Biology and Translational Science 119: 105–135. doi:10.1016/B978-0-12-396971-2.00005-1.

    Article  PubMed  Google Scholar 

  • ———. 2015. Keeping circadian time with hormones. Diabetes, Obesity & Metabolism 17(Suppl 1): 76–83. doi:10.1111/dom.12516.

    Article  CAS  Google Scholar 

  • Challet, E., I. Caldelas, C. Graff, and P. Pévet. 2003. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biological Chemistry 384: 711–719. doi:10.1515/BC.2003.079.

    Article  CAS  PubMed  Google Scholar 

  • Challet, E., J. Mendoza, H. Dardente, and P. Pévet. 2009. Neurogenetics of food anticipation. The European Journal of Neuroscience 30: 1676–1687. doi:10.1111/j.1460-9568.2009.06962.x.

    Article  PubMed  Google Scholar 

  • Chausse, B., M.A. Vieira-Lara, A.B. Sanchez, M.H.G. Medeiros, and A.J. Kowaltowski. 2015. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state. PLoS One 10: e0120413. doi:10.1371/journal.pone.0120413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chua, E.C.-P., G. Shui, I.T.-G. Lee, P. Lau, L.-C. Tan, S.-C. Yeo, B.D. Lam, S. Bulchand, S.A. Summers, K. Puvanendran, S.G. Rozen, M.R. Wenk, and J.J. Gooley. 2013. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proceedings of the National Academy of Sciences of the United States of America 110: 14468–14473. doi:10.1073/pnas.1222647110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolla-Neto, J., F.G. Amaral, S.C. Afeche, D.X. Tan, and R.J. Reiter. 2014. Melatonin, energy metabolism, and obesity: A review. Journal of Pineal Research 56: 371–381. doi:10.1111/jpi.12137.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J.P., and P. Kofuji. 2010. Stoichiometry of N-methyl-D-aspartate receptors within the suprachiasmatic nucleus. Journal of Neurophysiology 103: 3448–3464. doi:10.1152/jn.01069.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colquitt, J.L., K. Pickett, E. Loveman, and G.K. Frampton. 2014. Surgery for weight loss in adults. The Cochrane Database of Systematic Reviews CD003641. doi:10.1002/14651858.CD003641.pub4

  • Colwell, C.S. 2001. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: Gating by the circadian system. The European Journal of Neuroscience 13: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2011. Linking neural activity and molecular oscillations in the SCN. Nature Reviews. Neuroscience 12: 553–569. doi:10.1038/nrn3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connors, B.W., and M.A. Long. 2004. Electrical synapses in the mammalian brain. Annual Review of Neuroscience 27: 393–418. doi:10.1146/annurev.neuro.26.041002.131128.

    Article  CAS  PubMed  Google Scholar 

  • Coomans, C.P., S.A.A. van den Berg, T. Houben, J.-B. van Klinken, R. van den Berg, A.C.M. Pronk, L.M. Havekes, J.A. Romijn, K.W. van Dijk, N.R. Biermasz, and J.H. Meijer. 2013. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 27: 1721–1732. doi:10.1096/fj.12-210898.

    Article  CAS  Google Scholar 

  • Dailey, M.J., K.C. Stingl, and T.H. Moran. 2012. Disassociation between preprandial gut peptide release and food-anticipatory activity. Endocrinology 153: 132–142. doi:10.1210/en.2011-1464.

    Article  CAS  PubMed  Google Scholar 

  • Damiola, F., N. Le Minh, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes & Development 14: 2950–2961.

    Article  CAS  Google Scholar 

  • Deans, M.R., J.R. Gibson, C. Sellitto, B.W. Connors, and D.L. Paul. 2001. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31: 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Debruyne, J.P., E. Noton, C.M. Lambert, E.S. Maywood, D.R. Weaver, and S.M. Reppert. 2006. A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50: 465–477. doi:10.1016/j.neuron.2006.03.041.

    Article  CAS  PubMed  Google Scholar 

  • Delezie, J., and E. Challet. 2011. Interactions between metabolism and circadian clocks: Reciprocal disturbances. Annals of the New York Academy of Sciences 1243: 30–46. doi:10.1111/j.1749-6632.2011.06246.x.

    Article  CAS  PubMed  Google Scholar 

  • Dibner, C., U. Schibler, and U. Albrecht. 2010. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annual Review of Physiology 72: 517–549. doi:10.1146/annurev-physiol-021909-135821.

    Article  CAS  PubMed  Google Scholar 

  • Donga, E., M. van Dijk, J.G. van Dijk, N.R. Biermasz, G.-J. Lammers, K.W. van Kralingen, E.P.M. Corssmit, and J.A. Romijn. 2010. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. The Journal of Clinical Endocrinology and Metabolism 95: 2963–2968. doi:10.1210/jc.2009-2430.

    Article  CAS  PubMed  Google Scholar 

  • Duez, H., and B. Staels. 2008. Rev-erb alpha gives a time cue to metabolism. FEBS Letters 582: 19–25. doi:10.1016/j.febslet.2007.08.032.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.S., E.W. Green, Y. Zhao, G. van Ooijen, M. Olmedo, X. Qin, Y. Xu, M. Pan, U.K. Valekunja, K.A. Feeney, E.S. Maywood, M.H. Hastings, N.S. Baliga, M. Merrow, A.J. Millar, C.H. Johnson, C.P. Kyriacou, J.S. O’Neill, and A.B. Reddy. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485: 459–464. doi:10.1038/nature11088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enoki, R., S. Kuroda, D. Ono, M.T. Hasan, T. Ueda, S. Honma, and K. Honma. 2012. Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the United States of America 109: 21498–21503. doi:10.1073/pnas.1214415110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar, C., C. Cailotto, M. Angeles-Castellanos, R.S. Delgado, and R.M. Buijs. 2009. Peripheral oscillators: The driving force for food-anticipatory activity. The European Journal of Neuroscience 30: 1665–1675. doi:10.1111/j.1460-9568.2009.06972.x.

    Article  PubMed  Google Scholar 

  • Farajnia, S., T.L.E. van Westering, J.H. Meijer, and S. Michel. 2014. Seasonal induction of GABAergic excitation in the central mammalian clock. Proceedings of the National Academy of Sciences of the United States of America 111: 9627–9632. doi:10.1073/pnas.1319820111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnell, Y.F., V.R. Shende, N. Neuendorff, G.C. Allen, and D.J. Earnest. 2011. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties. The European Journal of Neuroscience 33: 1533–1540. doi:10.1111/j.1460-9568.2011.07629.x.

    Article  PubMed  Google Scholar 

  • Farshchi, H.R., M.A. Taylor, and I.A. Macdonald. 2005. Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. The American Journal of Clinical Nutrition 81: 388–396.

    CAS  PubMed  Google Scholar 

  • Feillet, C.A., U. Albrecht, and E. Challet. 2006. “Feeding time” for the brain: A matter of clocks. Journal of Physiology, Paris 100: 252–260. doi:10.1016/j.jphysparis.2007.05.002.

    Article  PubMed  Google Scholar 

  • Fonken, L.K., and R.J. Nelson. 2014. The effects of light at night on circadian clocks and metabolism. Endocrine Reviews 35: 648–670. doi:10.1210/er.9013-1051.

    Article  CAS  PubMed  Google Scholar 

  • Fonken, L.K., J.L. Workman, J.C. Walton, Z.M. Weil, J.S. Morris, A. Haim, and R.J. Nelson. 2010. Light at night increases body mass by shifting the time of food intake. Proceedings of the National Academy of Sciences of the United States of America 107: 18664–18669. doi:10.1073/pnas.1008734107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonken, L.K., T.G. Aubrecht, O.H. Meléndez-Fernández, Z.M. Weil, and R.J. Nelson. 2013a. Dim light at night disrupts molecular circadian rhythms and increases body weight. Journal of Biological Rhythms 28: 262–271. doi:10.1177/0748730413493862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonken, L.K., R.A. Lieberman, Z.M. Weil, and R.J. Nelson. 2013b. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology 154: 3817–3825. doi:10.1210/en.2013-1121.

    Article  CAS  PubMed  Google Scholar 

  • Fontaine, C., G. Dubois, Y. Duguay, T. Helledie, N. Vu-Dac, P. Gervois, F. Soncin, S. Mandrup, J.-C. Fruchart, J. Fruchart-Najib, and B. Staels. 2003. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. The Journal of Biological Chemistry 278: 37672–37680. doi:10.1074/jbc.M304664200.

    Article  CAS  PubMed  Google Scholar 

  • Fontana, L. 2009. Modulating human aging and age-associated diseases. Biochimica et Biophysica Acta 1790: 1133–1138. doi:10.1016/j.bbagen.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froy, O. 2007. The relationship between nutrition and circadian rhythms in mammals. Frontiers in Neuroendocrinology 28: 61–71. doi:10.1016/j.yfrne.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  • Froy, O., and R. Miskin. 2010. Effect of feeding regimens on circadian rhythms: Implications for aging and longevity. Aging 2: 7–27. doi:10.18632/aging.100116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froy, O., D.C. Chang, and S.M. Reppert. 2002. Redox potential: Differential roles in dCRY and mCRY1 functions. Current Biology: CB 12: 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Froy, O., N. Chapnik, and R. Miskin. 2008. The suprachiasmatic nuclei are involved in determining circadian rhythms during restricted feeding. Neuroscience 155: 1152–1159. doi:10.1016/j.neuroscience.2008.06.060.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2009. Effect of intermittent fasting on circadian rhythms in mice depends on feeding time. Mechanisms of Ageing and Development 130: 154–160. doi:10.1016/j.mad.2008.10.006.

  • Gamble, K.L., G.C. Allen, T. Zhou, and D.G. McMahon. 2007. Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27: 12078–12087. doi:10.1523/JNEUROSCI.1109-07.2007.

    Article  CAS  Google Scholar 

  • Garaulet, M., and P. Gómez-Abellán. 2014. Timing of food intake and obesity: A novel association. Physiology & Behavior 134: 44–50. doi:10.1016/j.physbeh.2014.01.001.

    Article  CAS  Google Scholar 

  • Garaulet, M., Y.-C. Lee, J. Shen, L.D. Parnell, D.K. Arnett, M.Y. Tsai, C.-Q. Lai, and J.M. Ordovas. 2009. CLOCK genetic variation and metabolic syndrome risk: Modulation by monounsaturated fatty acids. The American Journal of Clinical Nutrition 90: 1466–1475. doi:10.3945/ajcn.2009.27536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaulet, M., M.D. Corbalán-Tutau, J.A. Madrid, J.C. Baraza, L.D. Parnell, Y.-C. Lee, and J.M. Ordovas. 2010a. PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. Journal of the American Dietetic Association 110: 917–921. doi:10.1016/j.jada.2010.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaulet, M., Y.-C. Lee, J. Shen, L.D. Parnell, D.K. Arnett, M.Y. Tsai, C.-Q. Lai, and J.M. Ordovas. 2010b. Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors in overweight subjects (GOLDN population). European Journal of Human Genetics: EJHG 18: 364–369. doi:10.1038/ejhg.2009.176.

    Article  CAS  PubMed  Google Scholar 

  • Garaulet, M., C. Sánchez-Moreno, C.E. Smith, Y.-C. Lee, F. Nicolás, and J.M. Ordovás. 2011. Ghrelin, sleep reduction and evening preference: Relationships to CLOCK 3111 T/C SNP and weight loss. PLoS One 6: e17435. doi:10.1371/journal.pone.0017435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaulet, M., A. Esteban Tardido, Y.-C. Lee, C.E. Smith, L.D. Parnell, and J.M. Ordovás. 2012. SIRT1 and CLOCK 3111T>C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. International Journal of Obesity 2005(36): 1436–1441. doi:10.1038/ijo.2011.270.

    Article  CAS  Google Scholar 

  • Garaulet, M., P. Gómez-Abellán, J.J. Alburquerque-Béjar, Y.-C. Lee, J.M. Ordovás, and F.a.J.L. Scheer. 2013a. Timing of food intake predicts weight loss effectiveness. International Journal of Obesity 2005(37): 604–611. doi:10.1038/ijo.2012.229.

  • ———. 2013b. Timing of food intake predicts weight loss effectiveness. International Journal of Obesity 2005(37): 604–611. doi:10.1038/ijo.2012.229.

  • Glossop, N.R.J., and P.E. Hardin. 2002. Central and peripheral circadian oscillator mechanisms in flies and mammals. Journal of Cell Science 115: 3369–3377.

    CAS  PubMed  Google Scholar 

  • Goel, N., A.J. Stunkard, N.L. Rogers, H.P.A. Van Dongen, K.C. Allison, J.P. O’Reardon, R.S. Ahima, D.E. Cummings, M. Heo, and D.F. Dinges. 2009. Circadian rhythm profiles in women with night eating syndrome. Journal of Biological Rhythms 24: 85–94. doi:10.1177/0748730408328914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Abellán, P., J.J. Hernández-Morante, J.A. Luján, J.A. Madrid, and M. Garaulet. 2008. Clock genes are implicated in the human metabolic syndrome. International Journal of Obesity 2005(32): 121–128. doi:10.1038/sj.ijo.0803689.

    Article  CAS  Google Scholar 

  • Gonnissen, H.K.J., C. Mazuy, F. Rutters, E.A.P. Martens, T.C. Adam, and M.S. Westerterp-Plantenga. 2013. Sleep architecture when sleeping at an unusual circadian time and associations with insulin sensitivity. PLoS One 8: e72877. doi:10.1371/journal.pone.0072877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gooley, J.J., and E.C.-P. Chua. 2014. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. Journal of Genetics and Genomics = Yi Chuan Xue Bao 41: 231–250. doi:10.1016/j.jgg.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Gooley, J.J., J. Lu, T.C. Chou, T.E. Scammell, and C.B. Saper. 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neuroscience 4: 1165. doi:10.1038/nn768.

    Article  CAS  PubMed  Google Scholar 

  • Gooley, J.J., A. Schomer, and C.B. Saper. 2006. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neuroscience 9: 398–407. doi:10.1038/nn1651.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, D.J., N.M. Punjabi, A.B. Newman, H.E. Resnick, S. Redline, C.M. Baldwin, and F.J. Nieto. 2005. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Archives of Internal Medicine 165: 863–867. doi:10.1001/archinte.165.8.863.

    Article  PubMed  Google Scholar 

  • Green, C.B., J.S. Takahashi, and J. Bass. 2008. The meter of metabolism. Cell 134: 728–742. doi:10.1016/j.cell.2008.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumbs, A.A., I.M. Modlin, and G.H. Ballantyne. 2005. Changes in insulin resistance following bariatric surgery: Role of caloric restriction and weight loss. Obesity Surgery 15: 462–473. doi:10.1381/0960892053723367.

    Article  PubMed  Google Scholar 

  • Gupta, N., and S.W. Ragsdale. 2011. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. The Journal of Biological Chemistry 286: 4392–4403. doi:10.1074/jbc.M110.193466.

    Article  CAS  PubMed  Google Scholar 

  • Haigis, M.C., and D.A. Sinclair. 2010. Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathology 5: 253–295. doi:10.1146/annurev.pathol.4.110807.092250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hainerová, I., S.S. Torekov, J. Ek, M. Finková, K. Borch-Johnsen, T. Jørgensen, O.D. Madsen, J. Lebl, T. Hansen, and O. Pedersen. 2006. Association between neuromedin U gene variants and overweight and obesity. The Journal of Clinical Endocrinology and Metabolism 91: 5057–5063. doi:10.1210/jc.2006-1442.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal, J. 2002. Neurotransmitters of the retino-hypothalamic tract. Cell and Tissue Research 309: 73–88. doi:10.1007/s00441-002-0574-3.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2006. Roles of PACAP-containing retinal ganglion cells in circadian timing. International Review of Cytology 251: 1–39. doi:10.1016/S0074-7696(06)51001-0.

    Article  CAS  PubMed  Google Scholar 

  • Hara, R., K. Wan, H. Wakamatsu, R. Aida, T. Moriya, M. Akiyama, and S. Shibata. 2001. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes to Cells: Devoted to Molecular & Cellular Mechanisms 6: 269–278.

    Article  CAS  Google Scholar 

  • Hassa, P.O., S.S. Haenni, M. Elser, and M.O. Hottiger. 2006. Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiology and Molecular Biology Reviews: MMBR 70: 789–829. doi:10.1128/MMBR.00040-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings, M.H., M. Brancaccio, and E.S. Maywood. 2014. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. Journal of Neuroendocrinology 26: 2–10. doi:10.1111/jne.12125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatori, M., C. Vollmers, A. Zarrinpar, L. DiTacchio, E.A. Bushong, S. Gill, M. Leblanc, A. Chaix, M. Joens, J.A.J. Fitzpatrick, M.H. Ellisman, and S. Panda. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism 15: 848–860. doi:10.1016/j.cmet.2012.04.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay, N., and N. Sonenberg. 2004. Upstream and downstream of mTOR. Genes & Development 18: 1926–1945. doi:10.1101/gad.1212704.

    Article  CAS  Google Scholar 

  • Hirota, T., and Y. Fukada. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoological Science 21: 359–368. doi:10.2108/zsj.21.359.

    Article  PubMed  Google Scholar 

  • Hoogerwerf, W.A., H.L. Hellmich, G. Cornélissen, F. Halberg, V.B. Shahinian, J. Bostwick, T.C. Savidge, and V.M. Cassone. 2007. Clock gene expression in the murine gastrointestinal tract: Endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133: 1250–1260. doi:10.1053/j.gastro.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Howard, A.D., R. Wang, S.S. Pong, T.N. Mellin, A. Strack, X.M. Guan, Z. Zeng, D.L. Williams, S.D. Feighner, C.N. Nunes, B. Murphy, J.N. Stair, H. Yu, Q. Jiang, M.K. Clements, C.P. Tan, K.K. McKee, D.L. Hreniuk, T.P. McDonald, K.R. Lynch, J.F. Evans, C.P. Austin, C.T. Caskey, L.H. Van der Ploeg, and Q. Liu. 2000. Identification of receptors for neuromedin U and its role in feeding. Nature 406: 70–74. doi:10.1038/35017610.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, M.-C., S.-C. Yang, H.-L. Tseng, L.-L. Hwang, C.-T. Chen, and K.-R. Shieh. 2010. Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. International Journal of Obesity 2005(34): 227–239. doi:10.1038/ijo.2009.228.

    Article  CAS  Google Scholar 

  • Huang, C.C.Y., L. Shi, C.-H. Lin, A.J. Kim, M.L. Ko, and G.Y.-P. Ko. 2015. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors. Journal of Neurochemistry 135: 727–741. doi:10.1111/jnc.13349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado-Carneiro, V., I. Roncero, S.S. Egger, R.H. Wenger, E. Blazquez, C. Sanz, and E. Alvarez. 2014. PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Molecular Neurobiology 50: 314–326. doi:10.1007/s12035-013-8630-4.

    Article  CAS  PubMed  Google Scholar 

  • Imai, S.-I. 2010. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochimica et Biophysica Acta 1804: 1584–1590. doi:10.1016/j.bbapap.2009.10.024.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, I., Y. Shinoda, M. Ikeda, K. Hayashi, K. Kanazawa, M. Nomura, T. Matsunaga, H. Xu, S. Kawai, T. Awata, T. Komoda, and S. Katayama. 2005. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. Journal of Atherosclerosis and Thrombosis 12: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Inyushkin, A.N., G.S. Bhumbra, and R.E.J. Dyball. 2009. Leptin modulates spike coding in the rat suprachiasmatic nucleus. Journal of Neuroendocrinology 21: 705–714. doi:10.1111/j.1365-2826.2009.01889.x.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Z. Zhu, and H.J. Thompson. 2008. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Research 68: 5492–5499. doi:10.1158/0008-5472.CAN-07-6721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, S.D., and K.A. Lamia. 2013. AMPK at the crossroads of circadian clocks and metabolism. Molecular and Cellular Endocrinology 366: 163–169. doi:10.1016/j.mce.2012.06.017.

    Article  CAS  PubMed  Google Scholar 

  • Kalra, S.P., M. Bagnasco, E.E. Otukonyong, M.G. Dube, and P.S. Kalra. 2003. Rhythmic, reciprocal ghrelin and leptin signaling: New insight in the development of obesity. Regulatory Peptides 111: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Kalra, S.P., N. Ueno, and P.S. Kalra. 2005. Stimulation of appetite by ghrelin is regulated by leptin restraint: Peripheral and central sites of action. The Journal of Nutrition 135: 1331–1335.

    CAS  PubMed  Google Scholar 

  • Kalsbeek, A., E. Fliers, J.A. Romijn, S.E. La Fleur, J. Wortel, O. Bakker, E. Endert, and R.M. Buijs. 2001. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142: 2677–2685. doi:10.1210/endo.142.6.8197.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek, A., I.F. Palm, S.E. La Fleur, F.a.J.L. Scheer, S. Perreau-Lenz, M. Ruiter, F. Kreier, C. Cailotto, and R.M. Buijs. 2006a. SCN outputs and the hypothalamic balance of life. Journal of Biological Rhythms 21: 458–469. doi:10.1177/0748730406293854.

  • Kalsbeek, A., S. Perreau-Lenz, and R.M. Buijs. 2006b. A network of (autonomic) clock outputs. Chronobiology International 23: 201–215. doi:10.1080/07420520500464528.

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek, A., E. Foppen, I. Schalij, C. Van Heijningen, J. van der Vliet, E. Fliers, and R.M. Buijs. 2008. Circadian control of the daily plasma glucose rhythm: An interplay of GABA and glutamate. PLoS One 3: e3194. doi:10.1371/journal.pone.0003194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalsbeek, A., S. la Fleur, and E. Fliers. 2014. Circadian control of glucose metabolism. Molecular Metabolism 3: 372–383. doi:10.1016/j.molmet.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, K., T. Yamada, S. Tsukita, K. Takahashi, Y. Ishigaki, Y. Oka, and H. Katagiri. 2009. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Research 1263: 58–68. doi:10.1016/j.brainres.2008.12.071.

    Article  CAS  PubMed  Google Scholar 

  • Karatsoreos, I.N., S. Bhagat, E.B. Bloss, J.H. Morrison, and B.S. McEwen. 2011. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proceedings of the National Academy of Sciences of the United States of America 108: 1657–1662. doi:10.1073/pnas.1018375108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettner, N.M., S.A. Mayo, J. Hua, C. Lee, D.D. Moore, and L. Fu. 2015. Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metabolism 22: 448–459. doi:10.1016/j.cmet.2015.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khapre, R.V., S.A. Patel, A.A. Kondratova, A. Chaudhary, N. Velingkaar, M.P. Antoch, and R.V. Kondratov. 2014. Metabolic clock generates nutrient anticipation rhythms in mTOR signaling. Aging 6: 675–689. doi:10.18632/aging.100686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.G., G.R. Buel, and J. Blenis. 2013. Nutrient regulation of the mTOR complex 1 signaling pathway. Molecules and Cells 35: 463–473. doi:10.1007/s10059-013-0138-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M., Y.G. Son, Y.N. Kang, T.K. Ha, and E. Ha. 2015. Changes in glucose transporters, gluconeogenesis, and circadian clock after duodenal-jejunal bypass surgery. Obesity Surgery 25: 635–641. doi:10.1007/s11695-014-1434-4.

    Article  PubMed  Google Scholar 

  • Kirsz, K., and D.A. Zieba. 2012. A review on the effect of the photoperiod and melatonin on interactions between ghrelin and serotonin. General and Comparative Endocrinology 179: 248–253. doi:10.1016/j.ygcen.2012.08.025.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa, M. 2013. Circadian rhythms, metabolism, and insulin sensitivity: Transcriptional networks in animal models. Current Diabetes Reports 13: 223–228. doi:10.1007/s11892-012-0354-8.

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard, M., C. Nilsson, A. Rosendal, M.O. Nielsen, and K. Raun. 2014. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile. Acta Physiologica (Oxford, England) 210: 142–153. doi:10.1111/apha.12138.

    Article  CAS  Google Scholar 

  • Klempel, M.C., C.M. Kroeger, S. Bhutani, J.F. Trepanowski, and K.A. Varady. 2012. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutrition Journal 11: 98. doi:10.1186/1475-2891-11-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutson, K.L., and E. Van Cauter. 2008. Associations between sleep loss and increased risk of obesity and diabetes. Annals of the New York Academy of Sciences 1129: 287–304. doi:10.1196/annals.1417.033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, D., O. Takahashi, G.A. Deshpande, T. Shimbo, and T. Fukui. 2011. Relation between metabolic syndrome and sleep duration in Japan: A large scale cross-sectional study. Internal Medicine (Tokyo, Japan) 50: 103–107.

    Article  Google Scholar 

  • ———. 2012. Association between weight gain, obesity, and sleep duration: A large-scale 3-year cohort study. Sleep & Breathing = Schlaf & Atmung 16: 829–833. doi:10.1007/s11325-011-0583-0.

  • Kohsaka, A., and J. Bass. 2007. A sense of time: How molecular clocks organize metabolism. Trends in Endocrinology and Metabolism: TEM 18: 4–11. doi:10.1016/j.tem.2006.11.005.

    Article  CAS  PubMed  Google Scholar 

  • Kooijman, S., R. van den Berg, A. Ramkisoensing, M.R. Boon, E.N. Kuipers, M. Loef, T.C.M. Zonneveld, E.A. Lucassen, H.C.M. Sips, I.A. Chatzispyrou, R.H. Houtkooper, J.H. Meijer, C.P. Coomans, N.R. Biermasz, and P.C.N. Rensen. 2015. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proceedings of the National Academy of Sciences of the United States of America 112: 6748–6753. doi:10.1073/pnas.1504239112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo, T., T. Tamagawa, M. Kawashima, N. Mito, and S. Shibata. 2007. Attenuating effect of clock mutation on triglyceride contents in the ICR mouse liver under a high-fat diet. Journal of Biological Rhythms 22: 312–323. doi:10.1177/0748730407302625.

    Article  CAS  PubMed  Google Scholar 

  • Kudo, T., Y. Tahara, K.L. Gamble, D.G. McMahon, G.D. Block, and C.S. Colwell. 2013. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. Journal of Neurophysiology 110: 1097–1106. doi:10.1152/jn.00114.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume, K., M.J. Zylka, S. Sriram, L.P. Shearman, D.R. Weaver, X. Jin, E.S. Maywood, M.H. Hastings, and S.M. Reppert. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193–205.

    Article  CAS  PubMed  Google Scholar 

  • Lamont, E.W., J. Bruton, I.D. Blum, and A. Abizaid. 2014. Ghrelin receptor-knockout mice display alterations in circadian rhythms of activity and feeding under constant lighting conditions. The European Journal of Neuroscience 39: 207–217. doi:10.1111/ejn.12390.

    Article  PubMed  Google Scholar 

  • Landry, G.J., M.M. Simon, I.C. Webb, and R.E. Mistlberger. 2006. Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 290: R1527–R1534. doi:10.1152/ajpregu.00874.2005.

    Article  CAS  PubMed  Google Scholar 

  • Laplante, M., and D.M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149: 274–293. doi:10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Foll, C., B.G. Irani, C. Magnan, A.A. Dunn-Meynell, and B.E. Levin. 2009. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 297: R655–R664. doi:10.1152/ajpregu.00223.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Foll, C., A. Dunn-Meynell, S. Musatov, C. Magnan, and B.E. Levin. 2013. FAT/CD36: A major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 62: 2709–2716. doi:10.2337/db12-1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Martelot, G., T. Claudel, D. Gatfield, O. Schaad, B. Kornmann, G. Lo Sasso, A. Moschetta, and U. Schibler. 2009. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biology 7: e1000181. doi:10.1371/journal.pbio.1000181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, Y., and E.-K. Kim. 2013. AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Experimental & Molecular Medicine 45: e33. doi:10.1038/emm.2013.65.

    Article  CAS  Google Scholar 

  • Lee, J., M.-S. Kim, R. Li, V.Y. Liu, L. Fu, D.D. Moore, K. Ma, and V.K. Yechoor. 2011. Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in β-cells. Islets 3: 381–388. doi:10.4161/isl.3.6.18157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J., M. Moulik, Z. Fang, P. Saha, F. Zou, Y. Xu, D.L. Nelson, K. Ma, D.D. Moore, and V.K. Yechoor. 2013. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Molecular and Cellular Biology 33: 2327–2338. doi:10.1128/MCB.01421-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibetseder, V., S. Humpeler, M. Svoboda, D. Schmid, T. Thalhammer, A. Zuckermann, W. Marktl, and C. Ekmekcioglu. 2009. Clock genes display rhythmic expression in human hearts. Chronobiology International 26: 621–636. doi:10.1080/07420520902924939.

    Article  CAS  PubMed  Google Scholar 

  • Leone, T.C., J.J. Lehman, B.N. Finck, P.J. Schaeffer, A.R. Wende, S. Boudina, M. Courtois, D.F. Wozniak, N. Sambandam, C. Bernal-Mizrachi, Z. Chen, J.O. Holloszy, D.M. Medeiros, R.E. Schmidt, J.E. Saffitz, E.D. Abel, C.F. Semenkovich, and D.P. Kelly. 2005. PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biology 3: e101. doi:10.1371/journal.pbio.0030101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, J.D., C. Liu, and S. Li. 2008. Integration of energy metabolism and the mammalian clock. Cell Cycle (Georgetown, Texas) 7: 453–457. doi:10.4161/cc.7.4.5442.

    Article  CAS  Google Scholar 

  • Liu, C., S. Li, T. Liu, J. Borjigin, and J.D. Lin. 2007. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447: 477–481. doi:10.1038/nature05767.

    Article  CAS  PubMed  Google Scholar 

  • Loboda, A., W.K. Kraft, B. Fine, J. Joseph, M. Nebozhyn, C. Zhang, Y. He, X. Yang, C. Wright, M. Morris, I. Chalikonda, M. Ferguson, V. Emilsson, A. Leonardson, J. Lamb, H. Dai, E. Schadt, H.E. Greenberg, and P.Y. Lum. 2009. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Medical Genomics 2: 7. doi:10.1186/1755-8794-2-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long, M.A., M.J. Jutras, B.W. Connors, and R.D. Burwell. 2005. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature Neuroscience 8: 61–66. doi:10.1038/nn1361.

    Article  CAS  PubMed  Google Scholar 

  • Lowden, A., C. Moreno, U. Holmbäck, M. Lennernäs, and P. Tucker. 2010. Eating and shift work—effects on habits, metabolism and performance. Scandinavian Journal of Work, Environment & Health 36: 150–162.

    Article  Google Scholar 

  • Lowrey, P.L., and J.S. Takahashi. 2004. Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Annual Review of Genomics and Human Genetics 5: 407–441. doi:10.1146/annurev.genom.5.061903.175925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukaszewski, M.-A., D. Eberlé, D. Vieau, and C. Breton. 2013. Nutritional manipulations in the perinatal period program adipose tissue in offspring. American Journal of Physiology. Endocrinology and Metabolism 305: E1195–E1207. doi:10.1152/ajpendo.00231.2013.

    Article  CAS  PubMed  Google Scholar 

  • Lundkvist, G.B., Y. Kwak, E.K. Davis, H. Tei, and G.D. Block. 2005. A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25: 7682–7686. doi:10.1523/JNEUROSCI.2211-05.2005.

    Article  CAS  Google Scholar 

  • Ma, L., W. Dong, R. Wang, Y. Li, B. Xu, J. Zhang, Z. Zhao, and Y. Wang. 2015. Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Research Bulletin 116: 67–72. doi:10.1016/j.brainresbull.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Magliano, D.C., T.C.L. Bargut, S.N. de Carvalho, M.B. Aguila, C.A. Mandarim-de-Lacerda, and V. Souza-Mello. 2013. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 8: e64258. doi:10.1371/journal.pone.0064258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcheva, B., K.M. Ramsey, E.D. Buhr, Y. Kobayashi, H. Su, C.H. Ko, G. Ivanova, C. Omura, S. Mo, M.H. Vitaterna, J.P. Lopez, L.H. Philipson, C.A. Bradfield, S.D. Crosby, L. JeBailey, X. Wang, J.S. Takahashi, and J. Bass. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466: 627–631. doi:10.1038/nature09253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcheva, B., K.M. Ramsey, C.B. Peek, A. Affinati, E. Maury, and J. Bass. 2013. Circadian clocks and metabolism. Handbook of Experimental Pharmacology 127–155. doi:10.1007/978-3-642-25950-0_6.

  • Martin, T.L., T. Alquier, K. Asakura, N. Furukawa, F. Preitner, and B.B. Kahn. 2006a. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. The Journal of Biological Chemistry 281: 18933–18941. doi:10.1074/jbc.M512831200.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., M.P. Mattson, and S. Maudsley. 2006b. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Research Reviews 5: 332–353. doi:10.1016/j.arr.2006.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez de Morentin, P.B., L. Varela, J. Fernø, R. Nogueiras, C. Diéguez, and M. López. 2010. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica et Biophysica Acta 1801: 350–361. doi:10.1016/j.bbalip.2009.09.016.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P. 2005. Energy intake, meal frequency, and health: A neurobiological perspective. Annual Review of Nutrition 25: 237–260. doi:10.1146/annurev.nutr.25.050304.092526.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M.P., and R. Wan. 2005. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. The Journal of Nutritional Biochemistry 16: 129–137. doi:10.1016/j.jnutbio.2004.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Maywood, E.S., L. Drynan, J.E. Chesham, M.D. Edwards, H. Dardente, J.-M. Fustin, D.G. Hazlerigg, J.S. O’Neill, G.F. Codner, N.J. Smyllie, M. Brancaccio, and M.H. Hastings. 2013. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Proceedings of the National Academy of Sciences of the United States of America 110: 9547–9552. doi:10.1073/pnas.1220894110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoccoli, G., V. Pazienza, and M. Vinciguerra. 2012. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiology International 29: 227–251. doi:10.3109/07420528.2012.658127.

    Article  CAS  PubMed  Google Scholar 

  • McHill, A.W., E.L. Melanson, J. Higgins, E. Connick, T.M. Moehlman, E.R. Stothard, and K.P. Wright. 2014. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proceedings of the National Academy of Sciences of the United States of America 111: 17302–17307. doi:10.1073/pnas.1412021111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza, J. 2007. Circadian clocks: Setting time by food. Journal of Neuroendocrinology 19: 127–137. doi:10.1111/j.1365-2826.2006.01510.x.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, J., C. Graff, H. Dardente, P. Pevet, and E. Challet. 2005. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25: 1514–1522. doi:10.1523/JNEUROSCI.4397-04.2005.

    Article  CAS  Google Scholar 

  • Mendoza, J., P. Pévet, and E. Challet. 2007. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice. The European Journal of Neuroscience 25: 3691–3701. doi:10.1111/j.1460-9568.2007.05626.x.

    Article  PubMed  Google Scholar 

  • ———. 2008. High-fat feeding alters the clock synchronization to light. The Journal of Physiology 586: 5901–5910. doi:10.1113/jphysiol.2008.159566.

  • Meredith, A.L., S.W. Wiler, B.H. Miller, J.S. Takahashi, A.A. Fodor, N.F. Ruby, and R.W. Aldrich. 2006. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience 9: 1041–1049. doi:10.1038/nn1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, S., J. Itri, and C.S. Colwell. 2002. Excitatory mechanisms in the suprachiasmatic nucleus: The role of AMPA/KA glutamate receptors. Journal of Neurophysiology 88: 817–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, S., J. Itri, J.H. Han, K. Gniotczynski, and C.S. Colwell. 2006. Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neuroscience 7: 15. doi:10.1186/1471-2202-7-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mieda, M., and T. Sakurai. 2011. Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31: 15391–15396. doi:10.1523/JNEUROSCI.2801-11.2011.

    Article  CAS  Google Scholar 

  • Migrenne, S., C. Le Foll, B.E. Levin, and C. Magnan. 2011. Brain lipid sensing and nervous control of energy balance. Diabetes & Metabolism 37: 83–88. doi:10.1016/j.diabet.2010.11.001.

    Article  CAS  Google Scholar 

  • Minokoshi, Y., Y.-B. Kim, O.D. Peroni, L.G.D. Fryer, C. Müller, D. Carling, and B.B. Kahn. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339–343. doi:10.1038/415339a.

    Article  CAS  PubMed  Google Scholar 

  • Minokoshi, Y., T. Shiuchi, S. Lee, A. Suzuki, and S. Okamoto. 2008. Role of hypothalamic AMP-kinase in food intake regulation. Nutrition (Burbank, Los Angeles County, Calif.) 24: 786–790. doi:10.1016/j.nut.2008.06.002.

    Article  CAS  Google Scholar 

  • Mintz, E.M., C.L. Marvel, C.F. Gillespie, K.M. Price, and H.E. Albers. 1999. Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 19: 5124–5130.

    CAS  Google Scholar 

  • Mintz, E.M., A.M. Jasnow, C.F. Gillespie, K.L. Huhman, and H.E. Albers. 2002. GABA interacts with photic signaling in the suprachiasmatic nucleus to regulate circadian phase shifts. Neuroscience 109: 773–778.

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger, R.E. 1994. Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neuroscience and Biobehavioral Reviews 18: 171–195.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2009. Food-anticipatory circadian rhythms: Concepts and methods. The European Journal of Neuroscience 30: 1718–1729. doi:10.1111/j.1460-9568.2009.06965.x.

    Article  PubMed  Google Scholar 

  • Mistlberger, R.E., and M.C. Antle. 2011. Entrainment of circadian clocks in mammals by arousal and food. Essays in Biochemistry 49: 119–136. doi:10.1042/bse0490119.

    Article  CAS  PubMed  Google Scholar 

  • Miyazato, M., K. Mori, T. Ida, M. Kojima, N. Murakami, and K. Kangawa. 2008. Identification and functional analysis of a novel ligand for G protein-coupled receptor, Neuromedin S. Regulatory Peptides 145: 37–41. doi:10.1016/j.regpep.2007.08.013.

    Article  CAS  PubMed  Google Scholar 

  • Mohawk, J.A., and J.S. Takahashi. 2011. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends in Neurosciences 34: 349–358. doi:10.1016/j.tins.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohawk, J.A., C.B. Green, and J.S. Takahashi. 2012. Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience 35: 445–462. doi:10.1146/annurev-neuro-060909-153128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, T.H. 2010. Hypothalamic nutrient sensing and energy balance. Forum of Nutrition 63: 94–101. doi:10.1159/000264397.

    Article  CAS  PubMed  Google Scholar 

  • Mori, K., M. Miyazato, T. Ida, N. Murakami, R. Serino, Y. Ueta, M. Kojima, and K. Kangawa. 2005. Identification of neuromedin S and its possible role in the mammalian circadian oscillator system. The EMBO Journal 24: 325–335. doi:10.1038/sj.emboj.7600526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin, L.P. 2013. Neuroanatomy of the extended circadian rhythm system. Experimental Neurology 243: 4–20. doi:10.1016/j.expneurol.2012.06.026.

    Article  PubMed  Google Scholar 

  • Moriya, T., R. Aida, T. Kudo, M. Akiyama, M. Doi, N. Hayasaka, N. Nakahata, R. Mistlberger, H. Okamura, and S. Shibata. 2009. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. The European Journal of Neuroscience 29: 1447–1460. doi:10.1111/j.1460-9568.2009.06697.x.

    Article  PubMed  Google Scholar 

  • Morris, C.J., J.N. Yang, J.I. Garcia, S. Myers, I. Bozzi, W. Wang, O.M. Buxton, S.A. Shea, and F.A.J.L. Scheer. 2015. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proceedings of the National Academy of Sciences of the United States of America 112: E2225–E2234. doi:10.1073/pnas.1418955112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahm, S.-S., Y.Z. Farnell, W. Griffith, and D.J. Earnest. 2005. Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 25: 9304–9308. doi:10.1523/JNEUROSCI.2733-05.2005.

    Article  CAS  Google Scholar 

  • Nakahara, K., R. Hanada, N. Murakami, H. Teranishi, H. Ohgusu, N. Fukushima, M. Moriyama, T. Ida, K. Kangawa, and M. Kojima. 2004. The gut-brain peptide neuromedin U is involved in the mammalian circadian oscillator system. Biochemical and Biophysical Research Communications 318: 156–161. doi:10.1016/j.bbrc.2004.04.014.

    Article  CAS  PubMed  Google Scholar 

  • Nakahata, Y., M. Kaluzova, B. Grimaldi, S. Sahar, J. Hirayama, D. Chen, L.P. Guarente, and P. Sassone-Corsi. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329–340. doi:10.1016/j.cell.2008.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahata, Y., S. Sahar, G. Astarita, M. Kaluzova, and P. Sassone-Corsi. 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654–657. doi:10.1126/science.1170803.

    Article  CAS  PubMed  Google Scholar 

  • Novak, C.M., and H.E. Albers. 2002. N-Methyl-D-aspartate microinjected into the suprachiasmatic nucleus mimics the phase-shifting effects of light in the diurnal Nile grass rat (Arvicanthis niloticus). Brain Research 951: 255–263.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, J.S., E.S. Maywood, J.E. Chesham, J.S. Takahashi, and M.H. Hastings. 2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320: 949–953. doi:10.1126/science.1152506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obayashi, K., K. Saeki, J. Iwamoto, N. Okamoto, K. Tomioka, S. Nezu, Y. Ikada, and N. Kurumatani. 2013. Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: A cross-sectional analysis of the HEIJO-KYO study. The Journal of Clinical Endocrinology and Metabolism 98: 337–344. doi:10.1210/jc.2012-2874.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, H., S. Yamazaki, and D.G. McMahon. 2005. Constant light desynchronizes mammalian clock neurons. Nature Neuroscience 8: 267–269. doi:10.1038/nn1395.

    Article  CAS  PubMed  Google Scholar 

  • Ohta, H., A.C. Mitchell, and D.G. McMahon. 2006. Constant light disrupts the developing mouse biological clock. Pediatric Research 60: 304–308. doi:10.1203/01.pdr.0000233114.18403.66.

    Article  PubMed  Google Scholar 

  • Oishi, K., K. Miyazaki, and N. Ishida. 2002. Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: Entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background. Biochemical and Biophysical Research Communications 298: 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Oishi, K., H. Shirai, and N. Ishida. 2005. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. The Biochemical Journal 386: 575–581. doi:10.1042/BJ20041150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi, K., S. Higo-Yamamoto, S. Yamamoto, and Y. Yasumoto. 2015. Disrupted light-dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice. Biochemical and Biophysical Research Communications 458: 256–261. doi:10.1016/j.bbrc.2015.01.095.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, P., J. Ribot, A.M. Rodríguez, J. Sánchez, C. Picó, and A. Palou. 2006. Resistin as a putative modulator of insulin action in the daily feeding/fasting rhythm. Pflügers Archiv—European Journal of Physiology 452: 260–267. doi:10.1007/s00424-005-0034-5.

    Article  CAS  PubMed  Google Scholar 

  • Olivo, D., M. Caba, F. Gonzalez-Lima, A. Vázquez, and A. Corona-Morales. 2014. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus. Brain Research 1592: 11–21. doi:10.1016/j.brainres.2014.09.054.

    Article  CAS  PubMed  Google Scholar 

  • Oosterman, J.E., A. Kalsbeek, S.E. la Fleur, and D.D. Belsham. 2015. Impact of nutrients on circadian rhythmicity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 308: R337–R350. doi:10.1152/ajpregu.00322.2014.

    Article  CAS  PubMed  Google Scholar 

  • Pardini, L., and B. Kaeffer. 2006. Feeding and circadian clocks. Reproduction, Nutrition, Development 46: 463–480. doi:10.1051/rnd:2006032.

    Article  CAS  PubMed  Google Scholar 

  • Patton, D.F., and R.E. Mistlberger. 2013. Circadian adaptations to meal timing: Neuroendocrine mechanisms. Frontiers in Neuroscience 7: 185. doi:10.3389/fnins.2013.00185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulose, J.K., E.B. Rucker, and V.M. Cassone. 2012. Toward the beginning of time: Circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS One 7: e49555. doi:10.1371/journal.pone.0049555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevet, P., and E. Challet. 2011. Melatonin: Both master clock output and internal time-giver in the circadian clocks network. Journal of Physiology, Paris 105: 170–182. doi:10.1016/j.jphysparis.2011.07.001.

    Article  PubMed  Google Scholar 

  • Pfeuty, B., G. Mato, D. Golomb, and D. Hansel. 2003. Electrical synapses and synchrony: The role of intrinsic currents. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 23: 6280–6294.

    CAS  Google Scholar 

  • ———. 2005. The combined effects of inhibitory and electrical synapses in synchrony. Neural Computation 17: 633–670. doi:10.1162/0899766053019917.

  • Pitts, S., E. Perone, and R. Silver. 2003. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 285: R57–R67. doi:10.1152/ajpregu.00023.2003.

    Article  CAS  PubMed  Google Scholar 

  • Prasai, M.J., R.S. Mughal, S.B. Wheatcroft, M.T. Kearney, P.J. Grant, and E.M. Scott. 2013. Diurnal variation in vascular and metabolic function in diet-induced obesity: Divergence of insulin resistance and loss of clock rhythm. Diabetes 62: 1981–1989. doi:10.2337/db11-1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preitner, N., F. Damiola, L. Lopez-Molina, J. Zakany, D. Duboule, U. Albrecht, and U. Schibler. 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Pulivarthy, S.R., N. Tanaka, D.K. Welsh, L. De Haro, I.M. Verma, and S. Panda. 2007. Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America 104: 20356–20361. doi:10.1073/pnas.0708877104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaelli, M., A. Iaconelli, G. Nanni, C. Guidone, C. Callari, J.M. Fernandez Real, R. Bellantone, and G. Mingrone. 2015. Effects of biliopancreatic diversion on diurnal leptin, insulin and free fatty acid levels. The British Journal of Surgery 102: 682–690. doi:10.1002/bjs.9780.

    Article  CAS  PubMed  Google Scholar 

  • Ramkisoensing, A., and J.H. Meijer. 2015. Synchronization of biological clock neurons by light and peripheral feedback systems promotes circadian rhythms and health. Frontiers in Neurology 6: 128. doi:10.3389/fneur.2015.00128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsey, K.M., and J. Bass. 2011. Circadian clocks in fuel harvesting and energy homeostasis. Cold Spring Harbor Symposia on Quantitative Biology 76: 63–72. doi:10.1101/sqb.2011.76.010546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey, K.M., J. Yoshino, C.S. Brace, D. Abrassart, Y. Kobayashi, B. Marcheva, H.-K. Hong, J.L. Chong, E.D. Buhr, C. Lee, J.S. Takahashi, S.-I. Imai, and J. Bass. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651–654. doi:10.1126/science.1171641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman, L.M., and E. Ravussin. 2011. Caloric restriction in humans: Impact on physiological, psychological, and behavioral outcomes. Antioxidants & Redox Signaling 14: 275–287. doi:10.1089/ars.2010.3253.

    Article  CAS  Google Scholar 

  • Rehan, L., K. Laszki-Szcząchor, M. Sobieszczańska, and D. Polak-Jonkisz. 2014. SIRT1 and NAD as regulators of ageing. Life Sciences 105: 1–6. doi:10.1016/j.lfs.2014.03.015.

    Article  CAS  PubMed  Google Scholar 

  • Reid, K.J., K.G. Baron, and P.C. Zee. 2014. Meal timing influences daily caloric intake in healthy adults. Nutrition Research (New York, N.Y.) 34: 930–935. doi:10.1016/j.nutres.2014.09.010.

    Article  CAS  Google Scholar 

  • Revollo, J.R., A. Körner, K.F. Mills, A. Satoh, T. Wang, A. Garten, B. Dasgupta, Y. Sasaki, C. Wolberger, R.R. Townsend, J. Milbrandt, W. Kiess, and S.-I. Imai. 2007. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metabolism 6: 363–375. doi:10.1016/j.cmet.2007.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudic, R.D., P. McNamara, A.-M. Curtis, R.C. Boston, S. Panda, J.B. Hogenesch, and G.A. Fitzgerald. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biology 2: e377. doi:10.1371/journal.pbio.0020377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutter, J., M. Reick, L.C. Wu, and S.L. McKnight. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510–514. doi:10.1126/science.1060698.

    Article  CAS  PubMed  Google Scholar 

  • Sahar, S., S. Masubuchi, K. Eckel-Mahan, S. Vollmer, L. Galla, N. Ceglia, S. Masri, T.K. Barth, B. Grimaldi, O. Oluyemi, G. Astarita, W.C. Hallows, D. Piomelli, A. Imhof, P. Baldi, J.M. Denu, and P. Sassone-Corsi. 2014. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. The Journal of Biological Chemistry 289: 6091–6097. doi:10.1074/jbc.M113.537191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer, F.A.J.L., M.F. Hilton, C.S. Mantzoros, and S.A. Shea. 2009. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America 106: 4453–4458. doi:10.1073/pnas.0808180106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, E.M., A.M. Carter, and P.J. Grant. 2008. Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. International Journal of Obesity 2005(32): 658–662. doi:10.1038/sj.ijo.0803778.

    Article  CAS  Google Scholar 

  • Sherman, H., Y. Genzer, R. Cohen, N. Chapnik, Z. Madar, and O. Froy. 2012. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 26: 3493–3502. doi:10.1096/fj.12-208868.

    Article  CAS  Google Scholar 

  • Shimba, S., N. Ishii, Y. Ohta, T. Ohno, Y. Watabe, M. Hayashi, T. Wada, T. Aoyagi, and M. Tezuka. 2005. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 102: 12071–12076. doi:10.1073/pnas.0502383102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa, T., S. Honma, Y. Katsuno, H. Oguchi, and K.I. Honma. 2000. Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons. The European Journal of Neuroscience 12: 2833–2838.

    Article  CAS  PubMed  Google Scholar 

  • Smit, A.N., D.F. Patton, M. Michalik, H. Opiol, and R.E. Mistlberger. 2013. Dopaminergic regulation of circadian food anticipatory activity rhythms in the rat. PLoS One 8: e82381. doi:10.1371/journal.pone.0082381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, J., S.-F. Ke, C.-C. Zhou, S.-L. Zhang, Y.-F. Guan, T.-Y. Xu, C.-Q. Sheng, P. Wang, and C.-Y. Miao. 2014. Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 69: 44–57. doi:10.1093/gerona/glt122.

    Article  CAS  PubMed  Google Scholar 

  • Sookoian, S., C. Gemma, T.F. Gianotti, A. Burgueño, G. Castaño, and C.J. Pirola. 2008. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. The American Journal of Clinical Nutrition 87: 1606–1615.

    CAS  PubMed  Google Scholar 

  • Spiegel, K., E. Tasali, R. Leproult, and E. Van Cauter. 2009. Effects of poor and short sleep on glucose metabolism and obesity risk. Nature Reviews. Endocrinology 5: 253–261. doi:10.1038/nrendo.2009.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stankovic, M., D. Mladenovic, M. Ninkovic, D. Vucevic, T. Tomasevic, and T. Radosavljevic. 2013. Effects of caloric restriction on oxidative stress parameters. General Physiology and Biophysics 32: 277–283. doi:10.4149/gpb_2013027.

    Article  CAS  PubMed  Google Scholar 

  • Stokkan, K.A., S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker. 2001. Entrainment of the circadian clock in the liver by feeding. Science 291: 490–493. doi:10.1126/science.291.5503.490.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, E.L., E.K. Nousen, and K.A. Chamlou. 2014. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiology & Behavior 123: 236–242. doi:10.1016/j.physbeh.2012.07.014.

    Article  CAS  Google Scholar 

  • Summa, K.C., and F.W. Turek. 2014. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation. Advances in Nutrition (Bethesda, Md.) 5: 312S–319S. doi:10.3945/an.113.005132.

    Article  CAS  Google Scholar 

  • Sunderram, J., S. Sofou, K. Kamisoglu, V. Karantza, and I.P. Androulakis. 2014. Time-restricted feeding and the realignment of biological rhythms: Translational opportunities and challenges. Journal of Translational Medicine 12: 79. doi:10.1186/1479-5876-12-79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szewczyk-Golec, K., A. Woźniak, and R.J. Reiter. 2015. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: Implications for obesity. Journal of Pineal Research 59: 277–291. doi:10.1111/jpi.12257.

    Article  CAS  PubMed  Google Scholar 

  • Turek, F.W., C. Joshu, A. Kohsaka, E. Lin, G. Ivanova, E. McDearmon, A. Laposky, S. Losee-Olson, A. Easton, D.R. Jensen, R.H. Eckel, J.S. Takahashi, and J. Bass. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308: 1043–1045. doi:10.1126/science.1108750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um, J.-H., J.S. Pendergast, D.A. Springer, M. Foretz, B. Viollet, A. Brown, M.K. Kim, S. Yamazaki, and J.H. Chung. 2011. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6: e18450. doi:10.1371/journal.pone.0018450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virshup, D.M., E.J. Eide, D.B. Forger, M. Gallego, and E.V. Harnish. 2007. Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology 72: 413–420. doi:10.1101/sqb.2007.72.048.

    Article  CAS  PubMed  Google Scholar 

  • Vitaterna, M.H., D.P. King, A.M. Chang, J.M. Kornhauser, P.L. Lowrey, J.D. McDonald, W.F. Dove, L.H. Pinto, F.W. Turek, and J.S. Takahashi. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujovic, N., A.J. Davidson, and M. Menaker. 2008. Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 295: R355–R360. doi:10.1152/ajpregu.00498.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakamatsu, H., Y. Yoshinobu, R. Aida, T. Moriya, M. Akiyama, and S. Shibata. 2001. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. The European Journal of Neuroscience 13: 1190–1196.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M.E., Y. Shi, and H. Van Remmen. 2014. The effects of dietary restriction on oxidative stress in rodents. Free Radical Biology & Medicine 66: 88–99. doi:10.1016/j.freeradbiomed.2013.05.037.

    Article  CAS  Google Scholar 

  • Wang, L.M., A. Schroeder, D. Loh, D. Smith, K. Lin, J.H. Han, S. Michel, D.L. Hummer, J.C. Ehlen, H.E. Albers, and C.S. Colwell. 2008. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. The European Journal of Neuroscience 27: 1771–1779. doi:10.1111/j.1460-9568.2008.06144.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., S. Chen, M. Liu, and C. Liu. 2015. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver. Chronobiology International 32: 615–626. doi:10.3109/07420528.2015.1025958.

    Article  CAS  PubMed  Google Scholar 

  • Webb, I.C., M.C. Antle, and R.E. Mistlberger. 2014. Regulation of circadian rhythms in mammals by behavioral arousal. Behavioral Neuroscience 128: 304–325. doi:10.1037/a0035885.

    Article  PubMed  Google Scholar 

  • Welsh, D.K., S.-H. Yoo, A.C. Liu, J.S. Takahashi, and S.A. Kay. 2004. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Current Biology: CB 14: 2289–2295. doi:10.1016/j.cub.2004.11.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh, D.K., J.S. Takahashi, and S.A. Kay. 2010. Suprachiasmatic nucleus: Cell autonomy and network properties. Annual Review of Physiology 72: 551–577. doi:10.1146/annurev-physiol-021909-135919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger, S., R. Loewith, and M.N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124: 471–484. doi:10.1016/j.cell.2006.01.016.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., S. Yang, Y. Zou, S. Cheng, Y. Wang, Z. Jiang, J. Xiao, Z. Wang, and Y. Liu. 2013. Influence of the core circadian gene “Clock” on obesity and leptin resistance in mice. Brain Research 1491: 147–155. doi:10.1016/j.brainres.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., M. Downes, R.T. Yu, A.L. Bookout, W. He, M. Straume, D.J. Mangelsdorf, and R.M. Evans. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126: 801–810. doi:10.1016/j.cell.2006.06.050.

    Article  CAS  PubMed  Google Scholar 

  • Yannielli, P.C., P.C. Molyneux, M.E. Harrington, and D.A. Golombek. 2007. Ghrelin effects on the circadian system of mice. Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27: 2890–2895. doi:10.1523/JNEUROSCI.3913-06.2007.

    Article  CAS  Google Scholar 

  • Ye, R., C.P. Selby, Y.-Y. Chiou, I. Ozkan-Dagliyan, S. Gaddameedhi, and A. Sancar. 2014. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes & Development 28: 1989–1998. doi:10.1101/gad.249417.114.

    Article  CAS  Google Scholar 

  • Yi, C.-X., J. van der Vliet, J. Dai, G. Yin, L. Ru, and R.M. Buijs. 2006. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 147: 283–294. doi:10.1210/en.2005-1051.

    Article  CAS  PubMed  Google Scholar 

  • Yoshino, J., and S. Klein. 2013. A novel link between circadian clocks and adipose tissue energy metabolism. Diabetes 62: 2175–2177. doi:10.2337/db13-0457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., M. Kolaj, and L.P. Renaud. 2006. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: State-dependent response patterns observed in vitro. Neuroscience 141: 2059–2066. doi:10.1016/j.neuroscience.2006.05.042.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B., Y. Zhang, F. Zhang, Y. Xia, J. Liu, R. Huang, Y. Wang, Y. Hu, J. Wu, C. Dai, H. Wang, Y. Tu, X. Peng, Y. Wang, and Q. Zhai. 2014. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology (Baltimore, Md.) 59: 2196–2206. doi:10.1002/hep.26992.

    Article  CAS  Google Scholar 

  • Zvonic, S., A.A. Ptitsyn, S.A. Conrad, L.K. Scott, Z.E. Floyd, G. Kilroy, X. Wu, B.C. Goh, R.L. Mynatt, and J.M. Gimble. 2006. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55: 962–970.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Engin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engin, A. (2017). Circadian Rhythms in Diet-Induced Obesity. In: Engin, A., Engin, A. (eds) Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology, vol 960. Springer, Cham. https://doi.org/10.1007/978-3-319-48382-5_2

Download citation

Publish with us

Policies and ethics