Skip to main content

t-Resilient Immediate Snapshot Is Impossible

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

Abstract

An immediate snapshot object is a high level communication object, built on top of a read/write distributed system in which all except one processes may crash. It allows each process to write a value and obtains a set of pairs (process id, value) such that, despite process crashes and asynchrony, the sets obtained by the processes satisfy noteworthy inclusion properties.

Considering an n-process model in which up to t processes are allowed to crash (t-crash system model), this paper is on the construction of t-resilient immediate snapshot objects. In the t-crash system model, a process can obtain values from at least \((n-t)\) processes, and, consequently, t-immediate snapshot is assumed to have the properties of the basic \((n-1)\)-resilient immediate snapshot plus the additional property stating that each process obtains values from at least \((n-t)\) processes. The main result of the paper is the following. While there is a (deterministic) \((n-1)\)-resilient algorithm implementing the basic \((n-1)\)-immediate snapshot in an \((n-1)\)-crash read/write system, there is no t-resilient algorithm in a t-crash read/write model when \(t\in [1\ldots (n-2)]\). This means that, when \(t<n-1\), the notion of t-resilience is inoperative when one has to implement t-immediate snapshot for these values of t: the model assumption “at most \(t<n-1\) processes may crash” does not provide us with additional computational power allowing for the design of a genuine t-resilient algorithm (genuine meaning that such an algorithm would work in the t-crash model, but not in the \((t+1)\)-crash model). To show these results, the paper relies on well-known distributed computing agreement problems such as consensus and k-set agreement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    From a terminology point of view, we say t-failure model (in the present case t-crash model) if the model allows up to t processes to fail. We keep the term t-resilience for algorithms. The \((n-1)\)-crash model is also called wait-free model [16]. Several progress conditions have been associated with (n-1)-resilient algorithms: wait-freedom [16], non-blocking [22], or obstruction-freedom [18]. (See a unified presentation in Chap. 5 of [31].).

  2. 2.

    A is equivalent to B if A can be (computationally) reduced to B and reciprocally.

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Anderson, J.: Multi-writer composite registers. Distrib. Comput. 7(4), 175–195 (1994)

    Article  Google Scholar 

  3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. J. ACM 37(3), 524–548 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, New York (2004). 414 pages

    Book  MATH  Google Scholar 

  5. Borowsky E., Gafni E.: Immediate atomic snapshots and fast renaming. In: Proceedings of the 12th ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–50 (1993)

    Google Scholar 

  6. Borowsky E. and Gafni E., Generalized FLP impossibility results for \(t\)-resilient asynchronous computations. In: Proceedings of the 25th ACM Symposium on Theory of Computation (STOC 1993), California, USA, pp. 91–100 (1993)

    Google Scholar 

  7. Borowsky E., Gafni E.: A simple algorithmically reasoned characterization of wait-free computations. In: Proceedings of the 16th ACM Symposium on Principles of Distributed Computing (PODC 1997), pp. 189–198. ACM Press (1997)

    Google Scholar 

  8. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14, 127–146 (2001)

    Article  Google Scholar 

  9. Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond linearizability and up to tasks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 420–435. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5_28

    Chapter  Google Scholar 

  10. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: \(t\)-resilient immediate snapshot is impossible. Technical report 2036, IRISA, Université de Rennes (F): http://hal.inria.fr/hal-01313556

  13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gafni E., Kuznetsov P., and Manolescu C., A generalized asynchronous computability theorem. In: Proceedings of the 33th ACM Symposium on Principles of Distributed Computing (PODC 1994), pp. 222–231. ACM Press (2014)

    Google Scholar 

  15. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16023-3_30

    Chapter  Google Scholar 

  16. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)

    Article  Google Scholar 

  17. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann/Elsevier, New York (2014). 336 pages. ISBN 9780124045781

    MATH  Google Scholar 

  18. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended queues as an example. In: Proceedings of the 23th International IEEE Conference on Distributed Computing Systems (ICDCS 2003), pp. 522–529. IEEE Press (2003)

    Google Scholar 

  19. Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing shared memory models. Theor. Comput. Sci. 509, 3–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herlihy, M.P., Shavit, N.: A simple constructive computability theorem for wait-free computation. In: Proceedings of the 26th ACM Symposium on Theory of Computing (STOC 1994), pp. 243–252. ACM Press (1994)

    Google Scholar 

  21. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Programm. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  23. Lamport, L.: On interprocess communication, Part I: basic formalism. Distrib. Comput. 1(2), 77–85 (1986)

    Article  MATH  Google Scholar 

  24. Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consensus in asynchronous shared-memory systems. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 280–295. Springer, Heidelberg (1994). doi:10.1007/BFb0020440

    Chapter  Google Scholar 

  25. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

    MathSciNet  Google Scholar 

  26. Neiger G., Set-linearizability. In: Brief Announcement in Proceedings of the 13th ACM Symposium on Principles of Distributed Computing (PODC 1994), p. 396. ACM Press (1994)

    Google Scholar 

  27. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12200-2_36

    Chapter  Google Scholar 

  28. Rajsbaum, S., Raynal, M.: An introductory tutorial to concurrency-related distributed recursion. Bull. Eur. Assoc. TCS 111, 57–75 (2013)

    MathSciNet  Google Scholar 

  29. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69733-6_48

    Chapter  Google Scholar 

  30. Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations. Springer, Heidelberg (2013). 515 pages. ISBN 978-3-642-32026-2

    Book  MATH  Google Scholar 

  32. Raynal, M., Stainer, J.: Increasing the power of the iterated immediate snapshot model with failure detectors. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 231–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31104-8_20

    Chapter  Google Scholar 

  33. Saks, M., Zaharoglou, F.: Wait-free \(k\)-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pearson Prentice-Hall, Upper Saddle River (2006). 423 pages. ISBN 0-131-97259-6

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the referees for their constructive comments. This work was been partially supported by the French ANR project DISPLEXITY devoted to the study of Computability and Complexity in distributed computing, and the UNAM-PAPIIT project IN107714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Raynal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M. (2016). t-Resilient Immediate Snapshot Is Impossible. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics