Skip to main content

CFD/CAA Simulations on HPC Systems

  • Conference paper
  • First Online:
Book cover Sustained Simulation Performance 2016

Abstract

In this paper, a highly scalable numerical method is presented that allows to compute the aerodynamic sound from a turbulent flow field on HPC systems. A hybrid CFD-CAA method is used to compute the flow and the acoustic field, in which the two solvers are running in parallel to avoid expensive I/O operations for the acoustic source terms. Herein, the acoustic perturbation equations are solved by a high-order discontinuous Galerkin scheme using the acoustic source terms obtained from an approximate solution of the Navier-Stokes equations. Both solvers run simultaneously and operate on differently refined hierarchical Cartesian grids. This direct-hybrid method is validated by monopole and pressure pulse simulations and is used for performance measurements on current HPC systems. The results highlight the limitations of classic hybrid methods and show that the new approach is suitable for highly parallel simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins, H.L.: Continued development of the discontinuous Galerkin method for computational aeroacoustic applications. AIAA Paper (97-1581) (1997)

    Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, M., Dierke, J., Ewert, R.: Application of a discontinuous Galerkin method to discretize acoustic perturbation equations. AIAA J. 49(5), 898–908 (2011)

    Article  Google Scholar 

  4. Bui, T.Ph., Schröder, W., Meinke, M.: Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Comput. Fluids 37(9), 1157–1169 (2008)

    Google Scholar 

  5. Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Report TM 109112, NASA Langley Research Center (1994)

    Google Scholar 

  6. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE method. J. Sound Vibr. 270(3), 509–524 (2004)

    Article  Google Scholar 

  8. Farrell, P., Maddison, J.: Conservative interpolation between volume meshes by local Galerkin projection. Comput. Meth. Appl. Mech. Eng. 200(1–4), 89–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flad, D., Frank, H., Beck, A.D., Munz, C.D.: A Discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics. AIAA Paper (2014-2740) (2014)

    Google Scholar 

  10. Geiser, G., Marinc, D., Schröder, W.: Comparison of source reconstruction methods for hybrid aeroacoustic predictions. International Journal of Aeroacoustics 12(7–8), 639–662 (2014)

    Google Scholar 

  11. Geiser, G., Schlimpert, S., Schröder, W.: Thermoacoustical noise induced by laminar flame annihilation at varying flame thicknesses. In: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 04–06 June 2012, Colorado Springs, CO, AIAA 2012–2093 (2012)

    Google Scholar 

  12. Gröschel, E., Schröder, W., Renze, P., Meinke, M., Comte, P.: Noise prediction for a turbulent jet using different hybrid methods. Comput. Fluids 37(4), 414–426 (2008)

    Article  MATH  Google Scholar 

  13. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. & Fluids 102, 182–202 (2014)

    Article  Google Scholar 

  14. Hardin, J., Ristorcelli, J.R., Tam, C.K.W. (eds.): ISCASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA), vol. NASA Conference Publication 3000. NASA (1995)

    Google Scholar 

  15. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Meth. Appl. Mech. Eng. 200, 1038–1052 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

    Article  MathSciNet  Google Scholar 

  18. Koh, S., Schröder, W., Meinke, M.: Turbulence and heat excited noise sources in single and coaxial jets. J. Sound Vibr. 329, 786–803 (2010)

    Article  Google Scholar 

  19. Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approximation of Maxwell’s equations. In: B. Cockburn, G. Kariadakis, C.W. Shu (eds.) Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer (2000)

    Google Scholar 

  20. Li, J., Zingale, M., Liao, W.k., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R., Siegel, A., Gallagher, B.: Parallel netCDF: a high-performance scientific I/O interface. In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing - SC ’03, p. 39. ACM Press, New York, USA (2003)

    Google Scholar 

  21. Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on HPC systems. Comput. Meth. Appl. Mech. Eng. 277, 131–153 (2014)

    Article  MathSciNet  Google Scholar 

  22. Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)

    Article  Google Scholar 

  24. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

    Google Scholar 

  25. Directorate-General for Research, Innovation European Union: Flightpath 2050: Europe’s Vision for Aviation: Maintaining Global Leadership and Serving Society’s Needs. Office for Official Publications of the European Communities (2011)

    Google Scholar 

  26. Sagan, H.: Space-filling curves, 1st edn. In: Universitext. Springer, New York (1994)

    Google Scholar 

  27. Schlottke, M., Cheng, H.J., Lintermann, A., Meinke, M., Schröder, W.: A direct-hybrid method for computational aeroacoustics. In: AIAA Aviation, 22–26 June 2015, Dallas, TX, 21st AIAA/CEAS Aeroacoustics Conference, AIAA-2015–3133 (2015)

    Google Scholar 

  28. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yakovlev, S., Xu, L., Li, F.: Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Sci. 4(1–2), 80–91 (2013)

    Google Scholar 

Download references

Acknowledgements

This work has been performed with the support from the JARA-HPC SimLab Fluids & Solids Engineering of the RWTH Aachen University, Germany and the Forschungszentrum Jülich, Germany. The authors gratefully acknowledge the allocation of supercomputing time as well as the technical support by the High-Performance Computing Center Stuttgart of the University of Stuttgart, Germany and by the Jülich Supercomputing Centre of the Forschungszentrum Jülich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlottke-Lakemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Schlottke-Lakemper, M., Klemp, F., Cheng, HJ., Lintermann, A., Meinke, M., Schröder, W. (2016). CFD/CAA Simulations on HPC Systems. In: Resch, M., Bez, W., Focht, E., Patel, N., Kobayashi, H. (eds) Sustained Simulation Performance 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-46735-1_12

Download citation

Publish with us

Policies and ethics