Skip to main content

Plants and Animals as Source of Inspiration for Energy Dissipation in Load Bearing Systems and Facades

  • Chapter
  • First Online:

Part of the book series: Biologically-Inspired Systems ((BISY,volume 8))

Abstract

From the manifold strategies that nature offers to materials under overload conditions, we describe two: the fibrous and multi-layered system of the bark of the Giant Sequoia, which possesses an impressive damping mechanism, and the spines of pencil and lance sea urchins. The latter introduce a new concept to energy dissipation in brittle construction materials, namely quasi-ductility by multiple local fracturing. The potential for transfer as bioinspired technical solutions is high as the biological role models combine several advantages such as lightweight, recyclability and high protective efficiency. We demonstrate that, in principle, the concepts found in the biological role models can be transferred to concrete-based building materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizenberg J, Hanson J, Koetzle TF et al (1997) Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J Am Chem Soc 119(5):881–886. doi:10.1021/ja9628821

    Article  CAS  Google Scholar 

  • Amemiya CT, Miyake T, Rast JP (2005) Echinoderms. Curr Biol 15(23):R944–R946

    Article  CAS  PubMed  Google Scholar 

  • Astilleros JM, Fernández-Díaz L, Putnis A (2010) The role of magnesium in the growth of calcite: an AFM study. Chem Geol 27(1–2):52–58. doi:10.1016/j.chemgeo.2009.12.011

    Article  Google Scholar 

  • Bargel HJ, Schulze G (eds) (2012) Werkstoffkunde. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Bauer G, Speck T, Blömer J et al (2010) Insulation capability of the bark of trees with different fire adaptation. J Mater Sci 45(21):5950–5959. doi:10.1007/s10853-010-4680-4

    Google Scholar 

  • Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Mater Struct 24(6):425–450

    Article  CAS  Google Scholar 

  • CEB (Comité Euro-International du Béton) (1991) CEB-FIP Model code 1990. Bulletins d’Information. Thomas Telford, London, pp 203–205

    Google Scholar 

  • CEN (Coomite Europeen de Normalization) (2004) Eurocode 2: Design of concrete structures – Part 1–1: general rules and rules for buildings (EN 1992-1-1). CEN, Brussels

    Google Scholar 

  • Chen CC, Lin CC, Liu LG (2001) Elasticity of single-crystal calcite and rhodochrosite by Brillouin spectroscopy. Am Mineral 86:1525–1529

    Article  CAS  Google Scholar 

  • Constantinou CM, Soong TT, Dargush GF (1998) Passive energy dissipation systems for structural design and retrofit. In: MCEER Monograph serie no. 1. Multidisciplinary Center for Earthquake Engineering Research, Buffalo

    Google Scholar 

  • Ebert TA (1988) Growth, regeneration, and damage repair of spines of the slate-pencil sea urchin Heterocentrotus mammillatus (L.) (Echinodermata: Echinoidea). Pac Sci 42(3–4):160–172. doi:10.2307/1539799

    Google Scholar 

  • Eiberger J (2007) Röntgenographische Spannungsmessung durch Mikrodiffraktion. Diploma thesis, University of Tübingen

    Google Scholar 

  • Großmann JN (2010) Stereom differentiation in sea urchin spines under special consideration as a model for a new impact protective system. Dissertation, University of Tübingen

    Google Scholar 

  • Großmann JN, Nebelsick JH (2013) Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorph 132(3):301–315. doi:10.1007/s00435-013-0192-5

    Article  Google Scholar 

  • Hentz S, Donzé FV, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82(29):2509–2524

    Article  Google Scholar 

  • Herrmann M, Mittelstädt J, Wörner M et al (2013) Precast components made from functionally graded concrete. CPI (Concrete Plant Int) 6:60–64

    Google Scholar 

  • Herrmann M, Haase W (2013) Tragverhalten biege- und querkraftbeanspruchter Bauteile aus funktional gradiertem Beton (Load bearing behaviour of functionally graded concrete components under flexural and shear stress). Beton- und Stahlbetonbau 108(6):382–394. doi:10.1002/best.201300017

    Article  Google Scholar 

  • Magdans U, Gies H (2004) Single crystal structure analysis of sea urchin spine calcites: Systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur J Mineral 16(2):261–268. doi:10.1127/0935-1221/2004/0016-0261

    Article  CAS  Google Scholar 

  • Myers RI (2007) The 100 most important chemical compounds: a reference guide. Greenwood Press, Westport

    Google Scholar 

  • Nebelsick JH (1992) Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea, Egypt. Palaios 7(3):316–328. doi:10.2307/3514976

    Article  Google Scholar 

  • Noack C (2010) Untersuchungen zu Betonsandwichdecken mit funktional gradiertem Leichtbetonkern hinsichtlich des Tragverhaltens und des Masseneinsparpotentials (Investigations upon the load bearing capacity and the mass savings potential of functionally graded concrete sandwich slabs). Diploma thesis, University of Stuttgart

    Google Scholar 

  • Oaki Y, Imai H (2006) Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2(1):66–70

    Article  CAS  PubMed  Google Scholar 

  • Presser V, Schultheiß S, Berthold C et al (2009) Sea urchin spines as a model system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J Bionic Eng 6(3):203–213. doi:10.1016/S1672-6529(08)60125-0

    Article  Google Scholar 

  • Presser V, Schultheiß S, Kohler C et al (2011) Lessons from nature for the construction of ceramic cellular materials for superior energy absorption. Adv Eng Mater 13(11):1042–1049. doi:10.1002/adem.201100066

    Article  CAS  Google Scholar 

  • Schmeer D (2015) Experimentelle Untersuchung automatisiert hergestellter Bauteile aus funktional gradiertem Beton (Experimental investigations upon automated manufactured functionally graded concrete components). Master thesis, University of Stuttgart

    Google Scholar 

  • Smith A (1980) Stereom microstructure of the echinoid test. Spec Pap Palaeontol 25:1–81

    Google Scholar 

  • Stokes A, Salin F, Kokutse AD et al (2005) Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278(1–2):107–117. doi:10.1007/s11104-005-3899-3

    Article  CAS  Google Scholar 

  • Teuffel P (2004) Entwerfen adaptiver Strukturen (Design of adaptive structures). Dissertation, University of Stuttgart

    Google Scholar 

  • Thielen M, Speck T, Seidel R (2015) Impact behaviour of freeze-dried and fresh pomelo (Citrus maxima) peel – influence of the hydration state. R Soc Open Sci 2(6):140322. doi:10.1098/rsos.140322

    Article  PubMed  PubMed Central  Google Scholar 

  • Vecchio KS, Zhang X, Massie JB, Wang M (2007) Conversion of sea urchin spines to Mg substituted tricalcium phosphate for bone implants. Acta Biomater 3:785–793

    Article  CAS  PubMed  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V et al (2011) Rockfall characterization and structural protection – a review. Nat Hazards Earth Syst Sci 11:2617–2651. doi:10.5194/nhess-11-2617-2011

    Article  Google Scholar 

  • Weber J, Greer R, Voight B (1969) Unusual strength properties of echinoderm calcite related to structure. J Ultrastruct Res 26:355–366

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek GF (2002) Catastrophic rockfalls and rockslides in the Sierra Nevada, USA. In: Evans SG, DeGraff J (eds) Catastrophic landslides: effects, occurrence and mechanisms, Geological Society of America reviews in engineering geology XV. Geological Society of America, Boulder, pp 165–190

    Chapter  Google Scholar 

  • Zinoviev PA, Ermakov YN (1994) Energy dissipation in composite materials. Technomic Publishing Co. Inc, Lancaster

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141‘Biological Design and Integrative Structures’/project A02 ‘Plants and animals as source of inspiration for energy dissipation in load bearing systems and facades’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Klang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klang, K. et al. (2016). Plants and Animals as Source of Inspiration for Energy Dissipation in Load Bearing Systems and Facades. In: Knippers, J., Nickel, K., Speck, T. (eds) Biomimetic Research for Architecture and Building Construction. Biologically-Inspired Systems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-46374-2_7

Download citation

Publish with us

Policies and ethics