Skip to main content

Medical Complications of Spinal Cord Injury: Bone, Metabolic, Pressure Ulcers, and Sexuality and Fertility

  • Chapter
  • First Online:
Neurological Aspects of Spinal Cord Injury

Abstract

Spinal cord injury (SCI) results in significant bony, metabolic, skin, and sexual/fertility alterations. Rapid bone loss occurs after injury increasing the risk of fracture. In addition, individuals with SCI are also predisposed to extra-osseous bone formation, or heterotopic ossification, below the level of injury. Changes in basal metabolism and body composition after SCI often result in metabolic syndrome and increased risk of cardiovascular disease. Sensory and mobility impairments predispose individuals with SCI to pressure ulcer formation. Finally, SCI impacts both sexual function and fertility. Singularly or in combination, these changes result in significant morbidity and have the potential to negatively impact the quality of life in this population. For each of these complications, appropriate awareness, vigilance in prevention, and early intervention, when possible, are extremely important to improve the medical condition as well as the patient’s overall quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craven BC, Robertson LA, McGillivray CF, Adachi JD (2009) Detection and treatment of sublesional osteoporosis among patients with chronic spinal cord injury: Proposed paradigms. Topics in Spinal Cord Inj Rehabil 14(4):1–22

    Article  Google Scholar 

  2. Maimoun L, Fattal C, Sultan C (2011) Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism 60(12):1655–1663

    Article  CAS  PubMed  Google Scholar 

  3. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33(11):674–677

    Article  CAS  PubMed  Google Scholar 

  4. Edwards WB, Schnitzer TJ, Troy KL (2014) The mechanical consequence of actual bone loss and stimulated bone recovery in acute spinal cord injury. Bone 60:141–147

    Article  PubMed  Google Scholar 

  5. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  CAS  PubMed  Google Scholar 

  6. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5(8):843–850

    Article  CAS  PubMed  Google Scholar 

  7. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378

    Article  CAS  PubMed  Google Scholar 

  8. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal-cord injured patients. Bone 27(2):305–309

    Article  CAS  PubMed  Google Scholar 

  9. Biering-Sorensen F, Bohn HH, Schaadt OP (1998) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301

    Article  Google Scholar 

  10. Bauman WA, Schwartz E, Kirshblum S, Cirnigliaro C, Morrison N, Spungen AM (2009) Dual-energy x-ray absorptiometry overestimates bone mineral density of the lumbar spine in persons with spinal cord injury. Spinal Cord 47(8):628–633

    Article  CAS  PubMed  Google Scholar 

  11. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20(3):330–335

    Article  CAS  PubMed  Google Scholar 

  12. Eser P, Schiessl H, Willnecker J (2004) Bone loss and steady state after spinal cord injury: a cross-sectional study using pQCT. J Musculoskelet Nueronal Interact 4(2):197–198

    CAS  Google Scholar 

  13. Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32

    Article  CAS  PubMed  Google Scholar 

  14. Bauman WA, Spungen AM, Wang J, Pierson RN Jr, Schwartz E (1999) Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 10(2):123–127

    Article  CAS  PubMed  Google Scholar 

  15. Jiang SD, Jiang L, Dai L (2006) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65(5):555–565

    Article  CAS  Google Scholar 

  16. Comarr AE, Hutchinson RH, Bors E (1962) Extremity fractures of patients with spinal cord injuries. Am J Surg 103:732–739

    Article  CAS  PubMed  Google Scholar 

  17. Comarr EA, Hutchinson RH, Bors E (2005) Extremity fractures of patients with spinal cord injuries. Top Spinal Cord Inj Rehabil 11:1–10

    Article  Google Scholar 

  18. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36:790–796

    Article  CAS  PubMed  Google Scholar 

  19. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  20. Frisbie JH (1997) Fractures after myelopathy: the risk quantified. J Spinal Cord Med 20:66–69

    Article  CAS  PubMed  Google Scholar 

  21. Garland DE, Adkins RH, Stewart CA (2005) Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 11:61–69

    Article  Google Scholar 

  22. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    CAS  PubMed  Google Scholar 

  23. Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86:498–504

    Article  PubMed  Google Scholar 

  24. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM (2013) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 25:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carbone L, Chin AS, Lee TA, Burns SP, Svircev JN et al (2013) The association of anticonvulsant use with fractures in spinal cord injury. Am J Phys Med Rehabil 92(12):1037–1046

    Article  PubMed  Google Scholar 

  26. Carbone LD, Chin AS, Lee TA, Burns SP, Svircev JN et al (2013) The association of opioid use with incident lower extremity fractures in spinal cord injury. J Spinal Cord Med 36(2):91–96

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carbone LD, Chin AS, Lee TA, Burns SP, Svircev JN et al (2014) Thiazide use is associated with reduced risk for incident lower extremity fractures in men with spinal cord injury. Arch Phys Med Rehabil 95(6):1015–1020

    Article  PubMed  Google Scholar 

  28. Akhigbe T, Chin AS, Svircev JN, Hoenin H, Burns SP et al (2015) A retrospective review of lower extremity fracture care in patients with spinal cord injury. J Spinal Cord Med 38:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Freehafer AA, William AM (1965) Lower extremity fractures in patients with spinal cord injury. J Bone Joint Surg Am 47(4):683–694

    Article  CAS  PubMed  Google Scholar 

  30. Freehafer AA, Coletta MH, Becker CL (1981) Lower extremity fractures in patients with spinal cord injury. Paraplegia 19:367–372

    Article  CAS  PubMed  Google Scholar 

  31. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A et al (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20(3):385–392

    Article  CAS  PubMed  Google Scholar 

  32. Kanis JA, The WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  33. Morse LR, Giangregorio L, Battaglino RA, Holland R, Craven BC et al (2009) VA-Based Survey of Osteoporosis Management in Spinal Cord Injury. PM R 1(3):240–244

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bauman WA, Cardozo CP (2015) Osteoporosis in individuals with spinal cord injury. PM R 7:188–201

    Article  PubMed  Google Scholar 

  35. Morse LR, Geller A, Stolzmann KL, Matthess K, Lazzari AA, Garshick E (2009) Barriers to providing dual energy x-ray absorptiometry services to individuals with spinal cord injury. Am J Phys Med Rehabil 88(1):57–60

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shields RK, Schlechte J, Dudley-Javoroski SD, Zwart BD, Clark SD et al (2005) Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil 86(10):1969–1973

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morse LR, Lazzari AA, Battaglino R et al (2009) Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil 90(5):827–831

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morse LR, Sudhakar S, Lazzari AA, Tun C, Garshick E et al (2013) Sclerostin: a candidate biomarker of SCI-induced osteoporosis. Osteoporos Int 24:961–968

    Article  CAS  PubMed  Google Scholar 

  39. Doherty AL, Battaglino RA, Donovan J, Gagnon D, Lazzari AA et al (2014) Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury. J Bone Miner Res 29:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Craven C, Lynch CL, Eng JJ (2014). Bone health following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds). Spinal cord injury rehabilitation evidence, Version 5.0. Vancouver, p 1–37. https://www.scireproject.com/rehabilitation-evidence/bone-health

  41. Biering-Sorensen F, Hansen B, Lee BS (2009) Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord 47(7):508–518

    Article  CAS  PubMed  Google Scholar 

  42. Minaire P, Depassio J, Berard E, Meunier PJ, Edouard C, Pilonchery G et al (1987) Effects of clodronate on immobilization bone loss. Bone 8(Suppl 1):S63–S68

    PubMed  Google Scholar 

  43. Bauman WA, Wecht JM, Kirshblum S, Spungen AM et al (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42:305–313

    Article  PubMed  Google Scholar 

  44. Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K et al (2007) Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80:316–322

    Article  CAS  PubMed  Google Scholar 

  45. Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33(4):410–421

    Article  CAS  PubMed  Google Scholar 

  46. Bauman WA, Morrison NG, Spungen AM (2005) Vitamin D replacement in persons with spinal cord injury. J Spinal Cord Med 28(3):203–207

    Article  PubMed  Google Scholar 

  47. Ashe MC, Craven BC, Eng JJ, Krassioukov A, The SCIRE Research Team (2007) Prevention and treatment of bone loss after a spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil 13(1):123–145

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dolbow DR, Gorgery AS, Daniels JA, Ra A, Moore J, Gater DR Jr (2011) The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation 29(3):261–269

    CAS  PubMed  Google Scholar 

  49. Bryson JE, Gourlay ML (2009) Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med 32(3):215–225

    Article  PubMed  PubMed Central  Google Scholar 

  50. van Kuijk AA, Geurts ACH, van Kuppevelt HJM (2002) Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord 40(7):313–326

    Article  PubMed  Google Scholar 

  51. McIntyre A, Thompson S, Mehta S, Loh E, Teasell RW (2014) Heterotopic ossification following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds). Spinal cord injury rehabilitation evidence (SCIRE), Version 5.0. p 1–19. https://www.scireproject.com/rehabilitation-evidence/heterotopic-ossification

  52. Banovac K, Williams JM, Patrick LD, Haniff YM (2001) Prevention of heterotopic ossification after spinal cord injury with indomethacin. Spinal Cord 39(7):370–374

    Article  CAS  PubMed  Google Scholar 

  53. Citak M, Suero EM, Backhaus M, Aach M, Godry H et al (2012) Risk factors for heterotopic ossification in patients with spinal cord injury: a case-control study of 264 patients. Spine 37(23):1953–1957

    Article  PubMed  Google Scholar 

  54. Pape HC, Marsh S, Morley JR et al (2004) Current concepts in the development of heterotopic ossification. J Bone Joint Surg Br 86B(6):783–787

    Article  Google Scholar 

  55. da Paz AC, Artal FJC, Kalil RK (2007) The function of proprioceptors in bone organization: a possible explanation for neurogenic heterotopic ossification in patients with neurological damage. Med Hypotheses 68(1):67–73

    Article  PubMed  Google Scholar 

  56. Singh RS, Craig MC, Katholi CR et al (2003) Predictive value of creatine phosphokinase and alkaline phosphatase in identification of heterotopic ossification in patients after spinal cord injury. Arch Phys Med Rehabil 84:1584–1588

    Article  PubMed  Google Scholar 

  57. Sherman AL, Williams J, Patrick L et al (2003) The value of serum creatine kinase in early diagnosis of heterotopic ossification. J Spinal Cord Med 26:227–231

    Article  PubMed  Google Scholar 

  58. Estores I, Harrington A, Banovac K (2004) C-reactive protein and ESR rate in patients with HO. J Spinal Cord Med 27:434–437

    Article  Google Scholar 

  59. Shehab D, Elgazzar AH, Collier BD (2002) Heterotopic ossification. J Nucl Med 43(3):346–353

    PubMed  Google Scholar 

  60. Svircev JN, Wallbom AS (2008) False-negative triple-phase bone scans in spinal cord injury to detect clinically suspect heterotopic ossification: a case series. J Spinal Cord Med 31(2):194–196

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cassar-Pullicino V, McClelland M, Badwan D et al (1993) Sonographic diagnosis of heterotopic bone formation in spinal cord patients. Paraplegia 31(1):40–50

    Article  CAS  PubMed  Google Scholar 

  62. Wick L, Berger M, Knecht H (2005) Magnetic resonance signal alterations in the acute onset of heterotopic ossification in patients with spinal cord injury. Eur Radiol 15(9):1867–1875

    Article  CAS  PubMed  Google Scholar 

  63. Brooker AF, Bowerman JW, Robinson RA, Riley LH (1973) Ectopic ossification following total Hip-replacement – incidence and a method of classification. J Bone Joint Surg Am 55(8):1629–1632

    Article  CAS  PubMed  Google Scholar 

  64. Finerman GAM, Stover SL (1981) Heterotopic ossification following Hip-replacement or spinal-cord injury – 2 clinical-studies with ehdp. Metab Bone Dis Relat Res 3(4–5):337–342

    Article  CAS  PubMed  Google Scholar 

  65. Garland DE, Orwin JF (1989) Resection of heterotopic ossification in patients with spinal-cord injuries. Clin Orthop Relat Res 242:169–176

    Google Scholar 

  66. Mavrogenis AF, Guerra G, Staals EL, Bianchi G, Ruggieri P (2012) A classification method for neurogenic heterotopic ossification of the hip. J Orthop Traumatol 13(2):69–78

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stover SL, Hahn H, Miller J (1976) Disodium etidronate in the prevention of heterotopic ossification following spinal cord injury (preliminary report). Paraplegia 14:146–156

    Article  CAS  PubMed  Google Scholar 

  68. Banovac K, Williams JM, Patrick LD, Levi A (2004) Prevention of heterotopic ossification after spinal cord injury with COX-2 selective inhibitor (rofecoxib). Spinal Cord 42(12):707–710

    Article  CAS  PubMed  Google Scholar 

  69. Aubut JA, Mehta S, Cullen N, Teasell RW, ERABI Group, SCIRE Research Team (2011) A comparison of heterotopic ossification treatment within the traumatic brain and spinal cord injured population: an evidence based systematic review. NeuroRehabilitation 28(2):151–160

    PubMed  PubMed Central  Google Scholar 

  70. Teasell RW, Mehta S, Aubut JL, Ashe MC, Sequeira K, Macaluso S, Tu L, SCIRE Research Team (2010) A systematic review of the therapeutic interventions for heterotopic ossification after spinal cord injury. Spinal Cord 48(7):512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buschbacher R, McKinley W, Buschbacher L et al (1992) Warfarin in prevention of heterotopic ossification. Am J Phys Med Rehabil 71(2):86–91

    Article  CAS  PubMed  Google Scholar 

  72. Michelsson JE, Rauschning W (1983) Pathogenesis of experimental heterotopic bone-formation following temporary forcible exercising of immobilized limbs. Clin Orthop Relat Res 176:265–272

    Google Scholar 

  73. Snoecx M, Demuynck M, Vanlaere M (1995) Association between muscle trauma and heterotopic ossification in spinal-cord injured patients – reflections on their causal relationship and the diagnostic-value of ultrasonography. Paraplegia 33(8):464–468

    Article  CAS  PubMed  Google Scholar 

  74. Crawford C, Varghese G, Mani MM, Neff JR (1986) Heterotopic ossification: are range of motion exercises contraindicated? J Burn Care Rehabil 7:323–327

    Article  CAS  PubMed  Google Scholar 

  75. Subbarao JV, Nemchausky B, Gratzer M (1987) Resection of heterotopic ossification and Didronel therapy- regaining wheelchar independence in the spinal cord injured patient. J Am Paraplegia Soc 10:3–7

    Article  CAS  PubMed  Google Scholar 

  76. Banovac K, Sherman AL, Estrores IM, Banaovac L (2004) Prevention and treatment of heterotopic ossification after spinal cord injury. J Spinal Cord Med 27(4):376–382

    Article  PubMed  Google Scholar 

  77. Banovac K, Gonzalez F, Wade N, Bowker JJ (1993) Intravenous disodium etidronate therapy in spinal-cord injury patients with heterotopic ossification. Paraplegia 31(10):660–666

    Article  CAS  PubMed  Google Scholar 

  78. Durović A, Miljković D, Brdareski Z, Plavsić A, Jevtić M (2009) Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury. Vojnosanit Pregl 66(1):22–28

    Article  PubMed  Google Scholar 

  79. Sautter-Bihl ML, Liebermeister E, Nanassy A (2000) Radiotherapy as a local treatment option for heterotopic ossifications in patients with spinal cord injury. Spinal Cord 38(1):33–36

    Article  CAS  PubMed  Google Scholar 

  80. Banaovac K, Renfree K, Hornicek F (1998) Heterotopic ossification after brain and spinal cord injury. Crit Rev Phys Rehabil Med 10:223–256

    Article  Google Scholar 

  81. McAuliffe JA, Wolfson AH (1997) Early excision of heterotopic ossification about the elbow followed by radiation therapy. J Bone Joint Surg Am 79A(5):749–755

    Article  Google Scholar 

  82. van Kuijk AA, van Kuppevelt HJM, van der Schaaf DB (2000) Osteonecrosis after treatment for heterotopic ossification in spinal cord injury with the combination of surgery, irradiation, and an NSAID. Spinal Cord 38(5):319–324

    Article  PubMed  Google Scholar 

  83. Freebourn TM, Barber DB, Able AC (1999) The treatment of immature heterotopic ossification in spinal cord injury with combination surgery, radiation therapy and NSAID. Spinal Cord 37(1):50–53. (2005) Amino-bisphosphonates in heterotopic ossification: first experience in five consecutive cases. Spinal Cord 43(10):604–10

    Google Scholar 

  84. Meiners T, Abel R, Bohm V, Gerner HJ (1997) Resection of heterotopic ossification of the hip in spinal cord injured patients. Spinal Cord 35(7):443–445

    Article  CAS  PubMed  Google Scholar 

  85. Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG et al (2005) A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Annual statistical report for the spinal cord injury model systems (2013) https://www.nscisc.uab.edu/PublicDocuments/reports/pdf/2013%20NSCISC%20Annual%20Statistical%20Report%20Complete%20Public%20Version.pdf. Accessed 9 Dec 2014

  87. Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28(4):629–636

    Article  CAS  PubMed  Google Scholar 

  88. Bauman WA, Spungen AM (2001) Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med 24:266–277

    Article  CAS  PubMed  Google Scholar 

  89. Bauman WA, Spungen AM (2008) Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord 46(7):466–476

    Article  CAS  PubMed  Google Scholar 

  90. Illner K, Brinkmann G, Heller M, Bosy-Westphal A, MĂ¼ller MJ (2000) Metabolically active components of fat free mass and resting energy expenditure in nonobese adults. Am J Physiol Endocrinol Metab 278(2):E308–E315

    CAS  PubMed  Google Scholar 

  91. Mathias CJ, Frankel HL (2002) Autonomic disturbances in spinal cord lesions. In: Mathias CJ, Bannister R (eds) Autonomic failure: a textbook of clinical disorders of the autonomic nervous system, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  92. Buchholz AC, Pencharz PB (2004) Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 7(6):635–639

    Article  PubMed  Google Scholar 

  93. Monroe MB, Tataranni PA, Pratley R, Manore MM, Skinner JS, Ravussin E (1998) Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr 68(6):1223–1227

    CAS  PubMed  Google Scholar 

  94. Schmid A, Halle M, Stutzle C, Konig D, Baumstark MW, Storch MJ et al (2000) Lipoproteins and free plasma catecholamines in spinal cord injured men with different injury levels. Clin Physiol 20:304–310

    Article  CAS  PubMed  Google Scholar 

  95. Manns PJ, McCubbin JA, Williams DP (2005) Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 86(6):1176–1181

    Article  PubMed  Google Scholar 

  96. Spungen AM, Adkins RH, Stewart CA, Wang J, Pierson RN et al (2003) Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol 95:2398–2407

    Article  PubMed  Google Scholar 

  97. Koerner A, Kratzsch J, Kiess W (2005) Adipocytokines: leptin – the classical, resistin – the controversial, adiponectin – the promising, and more to come. Best Pract Res Clin Endocrinol Metab 19(4):525–546

    Article  CAS  PubMed  Google Scholar 

  98. Rajala MV, Obici S, Scherer PE, Rossetti L (2003) Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest 111(2):225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bodary PF, Eitzman DT (2006) Adiponectin: vascular protection from the fat? Arterioscler Thromb Vasc Biol 26(2):235–236

    Article  CAS  PubMed  Google Scholar 

  100. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280(5):E745–E751

    CAS  PubMed  Google Scholar 

  101. Weber MM, Michl P, Auernhammer CJ, Engelhardt D (1997) Interleukin-3 and interleukin-6 stimulate cortisol secretion from adult human adrenocortical cells. Endocrinology 138:2207–2210

    Article  CAS  PubMed  Google Scholar 

  102. Bauman WA, Spungen AM (2007) Risk assessment for coronary heart disease in a veteran population with spinal cord injury. Top Spinal Cord Inj Rehabil 12(4):35–53

    Article  Google Scholar 

  103. Bauman WA, Adkins RH, Spungen AM, Kemp BJ, Waters RL (1998) The effect of residual neurological deficit on serum lipoproteins in individuals with chronic spinal cord injury. Spinal Cord 36:13–17

    Article  CAS  PubMed  Google Scholar 

  104. Bauman WA, Adkins RH, Spungen AM, Herbert R, Schechter C et al (1999) Is immobilization associated with an abnormal lipoprotein profile? Observations from a diverse cohort. Spinal Cord 37(7):485–493

    Article  CAS  PubMed  Google Scholar 

  105. Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43(6):749–756

    Article  CAS  PubMed  Google Scholar 

  106. Liang H, Chen D, Wang Y, Rimmer JH, Braunschweig CL (2007) Different risk factor patterns for metabolic syndrome in men with spinal cord injury compared with able-bodied men despite similar prevalence rates. Arch Phys Med Rehabil 88(9):1198–1204

    Article  PubMed  Google Scholar 

  107. Bauman WA, Adkins RH, Spungen AM, Water RL (1999) The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord 37(11):765–771

    Article  CAS  PubMed  Google Scholar 

  108. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D (2001) Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet 358(9294):1682–1686

    Article  CAS  PubMed  Google Scholar 

  109. Wofford MR, Hall JE (2004) Pathophysiology and treatment of obesity hypertension. Curr Pharm Des 10(29):3621–3637

    Article  CAS  PubMed  Google Scholar 

  110. LaVela SL, Weaver FM, Goldstein B, Miskevics S, Rajan S, Gater DR (2006) Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med 29(4):387–395

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee MY, Myers J, Abella J, Froelicher VF, Perkash I, Kiratli BJ (2006) Homocysteine and hypertension in persons with spinal cord injury. Spinal Cord 44(8):474–479

    Article  CAS  PubMed  Google Scholar 

  112. Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23:469–480

    Article  CAS  PubMed  Google Scholar 

  113. Nash MS, Mendez AJ (2007) A guideline-driven assessment of need for cardiovascular disease risk intervention in persons with chronic paraplegia. Arch Phys Med Rehabil 88(6):751–757

    Article  PubMed  Google Scholar 

  114. Jones LM, Legge M, Goulding A (2004) Factor analysis of metabolic syndrome in spinal cord-injured men. Metabolism 53(10):1372–1377

    Article  CAS  PubMed  Google Scholar 

  115. Maruyama Y, Mizuguchi M, Yaginuma T, Kusaka M, Yoshida H et al (2008) Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 46(7):494–499

    Article  CAS  PubMed  Google Scholar 

  116. Gater DR (2007) Obesity after spinal cord injury. Phys Med Rehabil Clin N Am 18(2):333–351

    Article  PubMed  Google Scholar 

  117. Petry C, Rothstein JL, Bauman WA (1993) Hemoglobin A1c as a predictor of glucose intolerance in spinal cord injury. J Am Paraplegia Soc 16(1):56

    Google Scholar 

  118. Groah SL, Nash MS, Ljungberg IH, Libin A, Hamm LF et al (2009) Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury. J Spinal Cord Med 32(1):25–33

    Article  PubMed  PubMed Central  Google Scholar 

  119. Perret C, Stoffel-Kurt N (2011) Comparison of nutritional intake between individuals with acute and chronic spinal cord injury. J Spinal Cord Med 34(6):569–575

    Article  PubMed  PubMed Central  Google Scholar 

  120. Khalil RE, Gorgey AS, Janisko M, Dolbow DR, Moore JR, Gater DR (2013) The role of nutrition in health status after spinal cord injury. Aging Dis 4(1):14–22

    PubMed  Google Scholar 

  121. Szlachcic Y, Adkins RH, Adal T, Yee F, Bauman W, Waters RL (2001) The effect of dietary intervention on lipid profiles in individuals with spinal cord injury. J Spinal Cord Med 24:26–29

    Article  CAS  PubMed  Google Scholar 

  122. Fraser C, McIntyre A, Thompson S, Madady M, Teasell RW (2014) Nutrition issues following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds) Spinal cord injury rehabilitation evidence. Vancouver. https://www.scireproject.com/rehabilitation-evidence/nutrition-issues-following-spinal-cord-injury

  123. Warburton DER, Krassioukov A, Sproule S, Eng JJ (2014) Cardiovascular health and exercise following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds) Spinal cord injury rehabilitation evidence, Version 5.0. Vancouver. https://www.scireproject.com/rehabilitation-evidence/cardiovascular-health-and-exercise

  124. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Gater DR (2015) The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury – Part II. J Spinal Cord Med 38:23–37

    Article  PubMed  PubMed Central  Google Scholar 

  125. de Groot PC, Hjeltnes N, Heijboer AC, Stal W, Birkeland K (2003) Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord 41:673–679

    Article  PubMed  Google Scholar 

  126. El-Sayed MS, Younesian A (2005) Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. Spinal Cord 43:299–305

    Article  CAS  PubMed  Google Scholar 

  127. Dyson-Hudson TA, Sisto SA, Bond Q, Emmons R, Kirshblum SC (2007) Arm crank ergometry and shoulder pain in persons with spinal cord injury. Arch Phys Med Rehabil 88(12):1727–1729

    Article  PubMed  Google Scholar 

  128. Nash MS, Cowan RE, Kressler J (2012) Evidence-based and heuristic approaches for customization of care in cardiometabolic syndrome after spinal cord injury. J Spinal Cord Med 35(5):278–292

    Article  PubMed  PubMed Central  Google Scholar 

  129. Warburton DE, Gledhill N, Jamnik VK, Bredin SS, McKenzie DC et al (2011) Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document. Appl Physiol Nutr Metab 36(Suppl 1):S266–S298

    Article  PubMed  Google Scholar 

  130. Myers J, Lee M, Kiratli J (2009) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 2007 86:142–152

    Article  Google Scholar 

  131. Goldberg R (2009) Guideline-driven intervention on SCI-associated dyslipidemia, metabolic syndrome, and glucose intolerance using pharmacological agents. Top Spinal Cord Inj Rehabil 14(3):46–57

    Article  Google Scholar 

  132. Nash MS, Lewis JE, Dyson-Hudson TA, Szlachcic Y, Yee F et al (2011) Safety, tolerance, and efficacy of extended release niacin monotherapy for treating dyslipidemia risks in persons with chronic tetraplegia: a randomized multicenter controlled trial. Arch Phys Med Rehabil 92(3):399–410

    Article  PubMed  Google Scholar 

  133. Consortium for Spinal Cord Medicine (2001) Pressure ulcer prevention and treatment following spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med 24:S40–101

    Google Scholar 

  134. Kirshblum S, O’Connor K, Radar C (2011) Pressure ulcers and spinal cord injury. In: Kirshblum SC, Campagnolo D (eds) Spinal cord medicine, 2nd edn. Lippincott/Williams and Wilkins, Philadelphia, pp 242–264

    Google Scholar 

  135. Chen Y, DeVivo MJ, Jackson AB (2005) Pressure ulcer prevalence in people with spinal cord injury: age-period-duration effects. Arch Phys Med Rehabil 86:1208–1213

    Article  PubMed  Google Scholar 

  136. Ploumis A, Kolli S, Patrick M, Owens M, Beris A, Marino RJ (2011) Length of stay and medical stability for spinal cord-injured patients on admission to an inpatient rehabilitation hospital: a comparison between a model SCI trauma center and non-SCI trauma center. Spinal Cord 49(3):411–415

    Article  CAS  PubMed  Google Scholar 

  137. Verschueren JH, Post MW, de Groot S et al (2011) Occurrence and predictors of pressure ulcers during primary in-patient spinal cord injury rehabilitation. Spinal Cord 49:106–112

    Article  CAS  PubMed  Google Scholar 

  138. DeJong G, Hsieh CJ, Brown P et al (2014) Factors associated with pressure ulcers in spinal cord injury rehabilitation. Am J Phy Med Rehabil 93:971–986

    Article  Google Scholar 

  139. Scheel-Sailer A, Wyss A, Boldt C, Post MW, Lay V (2013) Prevalence, location, grade of pressure ulcers and association with specific patient characteristics in adult spinal cord injury patients during the hospital stay: a prospective cohort study. Spinal Cord 51:828–833

    Article  CAS  PubMed  Google Scholar 

  140. Cardenas DD, Hoffman JM, Kirshblum S, McKinley W (2004) Etiology and incidence of rehospitalization after traumatic spinal cord injury: a multicenter analysis. Arch Phys Med Rehabil 85(11):1757–1763

    Article  PubMed  Google Scholar 

  141. National Pressure Ulcer Advisory Panel (NPUAP) (1989) Pressure ulcers prevalence, cost and risk assessment: consensus development conference statement. Decubitus 2:24–28

    Google Scholar 

  142. National Pressure Ulcer Advisory Panel (2016) Pressure ulcer stages revised by NPUAP. NPUAP 2016. http://www.npuap.org/resources/educational-and-clinical-resources/pressure-injury-staging-illustrations/. Accessed 1 June 2016

  143. Hsieh J, McIntyre A, Wolfe D, Lala D, Titus L, Campbell K, Teasell R (2014) Pressure ulcers following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds) Spinal cord injury rehabilitation evidence, Version 5.0. p 1–90

    Google Scholar 

  144. Dumurgier C, Pujol G, Chevalley J, Bassoulet H, Ucla E, Stchepinsky P (1991) Pressure sore carcinoma: a late but fulminant complication of pressure sores in spinal cord injury patients: case reports. Paraplegia 29:390–395

    Article  CAS  PubMed  Google Scholar 

  145. Regan MA, Teasell RW, Wolfe DL, Keast D, Mortenson WB et al (2009) A systemic review of therapeutic interventions for pressure ulcers after spinal cord injury. Arch Phys Med Rehabil 19:213–231

    Article  Google Scholar 

  146. Coggrave MJ, Rose LS (2003) A specialist seating assessment clinic: changing pressure relief practice. Spinal Cord 41(12):692–695

    Article  CAS  PubMed  Google Scholar 

  147. Makhsous M, Priebe M, Bankard J et al (2007) Measuring tissue perfusion during pressure relief maneuvers: insights into preventing pressure ulcers. J Spinal Cord Med 30(5):497–507

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jan YK, Crane BA (2013) Wheelchair tilt-in-space and recline does not reduce sacral skin perfusion as changing from the upright to the tilted and reclined position in people with spinal cord injury. Arch Phys Med Rehabil 94(6):1207–1210

    Article  PubMed  PubMed Central  Google Scholar 

  149. Jan YK, Jones MA, Rabadi MH, Foreman RD, Thiessen A (2010) Effect of wheelchair tilt-in-space and recline angles on skin perfusion over the ischial tuberosity in people with spinal cord injury. Arch Phys Med Rehabil 91(11):1758–1764

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hobson DA (1992) Comparative effects of posture on pressure and shear at the body-seat interface. J Rehabil Res Dev 15:21–31

    Article  Google Scholar 

  151. Jones KR, Fennie K, Lenihan A (2007) Evidence-based management of chronic wounds. Adv Skin Wound Care 20(11):591–600

    Article  PubMed  Google Scholar 

  152. Tomaselli N (2006) The role of topical silver preparations in wound healing. J Wound Ostomy Continence Nurs 33:367–378

    Article  PubMed  Google Scholar 

  153. (2008) Silver dressings – do they work? Drug Ther Bull 48(4):38–42

    Google Scholar 

  154. Embil JM, Papp K, Sibbald G, Tousignant J, Smiell JM et al (2000) Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen 8(3):162–168

    Article  CAS  PubMed  Google Scholar 

  155. Bao P, Kodra A, Tomic-Canic M, Golinko MS et al (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358

    Article  CAS  PubMed  Google Scholar 

  156. de la Fuente SG, Levin LS, Reynolds JD, Olivares C, Pappas TN et al (2003) Elective stoma construction improves outcomes in medically intractable pressure ulcers. Dis Colon Rectum 46(11):1525–1530

    Article  PubMed  Google Scholar 

  157. Kruger EA, Ires M, Ngann Y, Sterling M, Rubayi S (2013) Comprehensive management of pressure ulcers in spinal cord injury: current concepts and future trends. J Spinal Cord Med 36:572–585

    Article  PubMed  PubMed Central  Google Scholar 

  158. Biglari B, Buchler A, Reitzel T et al (2014) A retrospective study on flap complication after pressure ulcer surgery in spinal cord injured patients. Spinal Cord 52:80–83

    Article  CAS  PubMed  Google Scholar 

  159. Elliott S, McBride K (2014) Sexual and reproductive health following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh JTC, Connolly SJ, Noonan VK, Loh E, McIntyre A (eds). Spinal cord injury rehabilitation evidence, Version 5.0. Vancouver, p 1–84. https://www.scireproject.com/rehabilitation-evidence/sexual-and-reproductive-health

  160. Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21:1371–1383

    Article  PubMed  Google Scholar 

  161. Kennedy P, Lude P, Taylor N (2006) Quality of life, social participation, appraisals and coping post spinal cord injury: a review of four community samples. Spinal Cord 44:95–105

    Article  CAS  PubMed  Google Scholar 

  162. Brakett NL, Lynne CM, Sonksen J, Ohl DA et al (2011) Sexual function and fertility after spinal cord injury. In: Kirshblum SC, Campagnolo D (eds) Spinal cord medicine, 2nd edn. Lippincott/Williams and Wilkins, Philadelphia, pp 410–426

    Google Scholar 

  163. Jones ML, Leslie DP, Bilsky G, Bowman B (2008) Effects of intrathecal baclofen on perceived sexual functioning in men with spinal cord injury. J Spinal Cord Med 31:97–102

    Article  PubMed  PubMed Central  Google Scholar 

  164. Soler JM, Previnaire JG, Denys P et al (2007) Phosphodiesterase inhibitors in the treatment of erectile dysfunction in spinal cord-injured men. Spinal Cord 45:169–173

    Article  CAS  PubMed  Google Scholar 

  165. Del Popolo G, Li Marzi V, Mondaini N et al (2004) Time/duration effectiveness of sildenafil versus tadalafil in the treatment of erectile dysfunction in male spinal cord-injured patients. Spinal Cord 42:643–648

    Article  PubMed  Google Scholar 

  166. Maytom MC, Ferry FA, Dinsmore WW et al (1999) A two-part pilot study of sildenafil (VIAGRA) in men with erectile dysfunction caused by spinal cord injury. Spinal Cord 37:110–116

    Article  CAS  PubMed  Google Scholar 

  167. Kimoto Y, Iwatsubo E (1994) Penile prostheses for the management of the neuropathic bladder and sexual dysfunction in spinal cord injury patients: long term follow up. Paraplegia 32:336–339

    Article  CAS  PubMed  Google Scholar 

  168. Zermann DH, Kutzenberger J, Sauerwein D, Schubert J, Loeffler U (2006) Penile prosthetic surgery in neurologically impaired patients: long-term followup. J Urol 175:1041–1044

    Article  PubMed  Google Scholar 

  169. Lloyd EE, Toth LL, Perkash I (1989) Vacuum tumescence: an option for spinal cord injured males with erectile dysfunction. SCI Nurs 6:25–28

    CAS  PubMed  Google Scholar 

  170. Lloyd LK, Richards JS (1989) Intracavernous pharmacotherapy for management of erectile dysfunction in spinal cord injury. Paraplegia 27:457–464

    Article  CAS  PubMed  Google Scholar 

  171. Monga M, Bernie J, Rajasekaran M (1999) Male infertility and erectile dysfunction in spinal cord injury: a review. [Review] [86 refs]. Arch Phys Med Rehabil 80:1331–1339

    Article  CAS  PubMed  Google Scholar 

  172. Padma-Nathan H, Hellstrom WJ, Kaiser FE et al (1997) Treatment of men with erectile dysfunction with transurethral alprostadil. Medicated Urethral System for Erection (MUSE) Study Group. N Engl J Med 336:1–7

    Article  CAS  PubMed  Google Scholar 

  173. Overgoor ML, de Jong TP, Cohen-Kettenis PT, Edens MA, Kon M (2013) Increased sexual health after restored genital sensation in male patients with spina bifida or a spinal cord injury: the TOMAX procedure. J Urol 189:626–632

    Article  CAS  PubMed  Google Scholar 

  174. Bennett CJ, Seager SW, Vasher EA et al (1998) Sexual dysfunction and electroejaculation in men with spinal cord injury: review. J Urol 139:453–456

    Google Scholar 

  175. Brown DJ, Hill ST, Baker HW (2006) Male fertility and sexual function after spinal cord injury. Prog Brain Res 152:427–439

    Article  CAS  PubMed  Google Scholar 

  176. Sonksen J, Ohl DA (2002) Penile vibratory stimulation and electroejaculation in the treatment of ejaculatory dysfunction. Int J Androl 25:324–332

    Article  PubMed  Google Scholar 

  177. Kafetsoulis A, Brackett NL, Ibrahim E, Attia GR, Lynne CM (2006) Current trends in the treatment of infertility in men with spinal cord injury. Fertil Steril 86:781–789

    Article  PubMed  Google Scholar 

  178. Bird VG, Brackett NL, Lynne CM, Aballa TC, Ferrell SM (2001) Reflexes and somatic responses as predictors of ejaculation by penile vibratory stimulation in men with spinal cord injury. Spinal Cord 39:514–519

    Article  CAS  PubMed  Google Scholar 

  179. Linsenmeyer TA (1991) Male infertility following spinal cord injury. J Am Paraplegia Soc 14:116–121

    Article  CAS  PubMed  Google Scholar 

  180. Brackett NL, Nash MS, Lynne CM (1996) Male fertility following spinal cord injury: facts and fiction. Phys Ther 76:1221–1231

    Article  CAS  PubMed  Google Scholar 

  181. Julia PE, Othman AS (2011) Barriers to sexual activity: counseling spinal cord injured women in Malaysia. Spinal Cord 49:791–794

    Article  CAS  PubMed  Google Scholar 

  182. Kreuter M, Taft C, Siösteen A, Biering-Sørensen F (2011) Women’s sexual functioning and sex life after spinal cord injury. Spinal Cord 49:154–160

    Article  CAS  PubMed  Google Scholar 

  183. Jackson AB, Wadley V (1999) A multicenter study of women’s self-reported reproductive health after spinal cord injury. Arch Phys Med Rehabil 80:1420–1428

    Article  CAS  PubMed  Google Scholar 

  184. Sipski ML (1991) Spinal cord injury: what is the effect on sexual response? J Am Paraplegia Soc 14:40–43

    Article  CAS  PubMed  Google Scholar 

  185. Sipski ML, Alexander CJ, Rosen R (2001) Sexual arousal and orgasm in women: effects of spinal cord injury. Ann Neurol 49:35–44

    Article  CAS  PubMed  Google Scholar 

  186. Sipski ML, Alexander CJ, Rosen RC (1997) Physiologic parameters associated with sexual arousal in women with incomplete spinal cord injuries. Arch Phys Med Rehabil 78:305–313

    Article  CAS  PubMed  Google Scholar 

  187. Sipski ML, Alexander CJ, Rosen RC (1995) Physiological parameters associated with psychogenic sexual arousal in women with complete spinal cord injuries. Arch Phys Med Rehabil 76:811–818

    Article  CAS  PubMed  Google Scholar 

  188. Anderson KD, Borisoff JF, Johnson RD, Stiens SA, Elliott SL (2007) Spinal cord injury influences psychogenic as well as physical components of female sexual ability. Spinal Cord 45:349–359

    CAS  PubMed  Google Scholar 

  189. Komisaruk BR, Whipple B, Crawford A, Liu WC, Kalnin A, Mosier K (2004) Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Res 1024:77–88

    Article  CAS  PubMed  Google Scholar 

  190. Whipple B, Komisaruk BR (1997) Sexuality and women with complete spinal cord injury. Spinal Cord 35:136–138

    Article  CAS  PubMed  Google Scholar 

  191. Charlifue SW, Gerhart KA, Menter RR, Whiteneck GG, Manley MS (1992) Sexual issues of women with spinal cord injuries. Paraplegia 30:192–199

    Article  CAS  PubMed  Google Scholar 

  192. Sipski M, Alexander C, Rosen R (1995) Orgasm in women with spinal cord injuries: a laboratory assessment. Arch Phys Med Rehabil 76:1097–1102

    Article  CAS  PubMed  Google Scholar 

  193. Sipski ML, Rosen RC, Alexander CJ, Hamer RM (2000) (1995) Sildenafil effects on sexual and cardiovascular responses in women with spinal cord injury. Urol 55:812–815

    Article  CAS  PubMed  Google Scholar 

  194. Alexander MS, Rosen RC, Steinberg S, Symonds T, Haughie S, Hultling C (2011) Sildenafil in women with sexual arousal disorder following spinal cord injury. Spinal Cord 49:273–279

    Article  CAS  PubMed  Google Scholar 

  195. Baker ER, Cardenas DD (1996) Pregnancy in spinal cord injured women. Arch Phys Med Rehabil 77:501–507

    Article  CAS  PubMed  Google Scholar 

  196. Camune BD (2013) Challenges in the management of the pregnant woman with spinal cord injury. J Perinat Neonatal Nurs 27(3):225–231

    Article  PubMed  Google Scholar 

  197. Pereira L (2003) Obstetric management of the patient with spinal cord injury. Obstet Gynecol Surv 58:678–687

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Kirshblum MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kirshblum, S., Donovan, J. (2017). Medical Complications of Spinal Cord Injury: Bone, Metabolic, Pressure Ulcers, and Sexuality and Fertility. In: Weidner, N., Rupp, R., Tansey, K. (eds) Neurological Aspects of Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-46293-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46293-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46291-2

  • Online ISBN: 978-3-319-46293-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics