Skip to main content

Turing’s Theory of Morphogenesis: Where We Started, Where We Are and Where We Want to Go

  • Chapter
  • First Online:
The Incomputable

Part of the book series: Theory and Applications of Computability ((THEOAPPLCOM))

Abstract

Over 60 years have passed since Alan Turing first postulated a mechanism for biological pattern formation. Although Turing did not have the chance to extend his theories before his unfortunate death two years later, his work has not gone unnoticed. Indeed, many researchers have since taken up the gauntlet and extended his revolutionary and counter-intuitive ideas. Here, we reproduce the basics of his theory as well as review some of the recent generalisations and applications that have led our mathematical models to be closer representations of the biology than ever before. Finally, we take a look to the future and discuss open questions that not only show that there is still much life in the theory, but also that the best may be yet to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J. Tomlin, J.D. Axelrod, Biology by numbers: mathematical modelling in developmental biology. Nat. Rev. Genet. 8 (5), 331–340 (2007)

    Article  Google Scholar 

  2. L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25 (1), 1–47 (1969)

    Article  Google Scholar 

  3. L. Wolpert, Positional information revisited. Development 107 (Suppl.), 3–12 (1989)

    Google Scholar 

  4. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  5. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Biol. Cybern. 12 (1), 30–39 (1972)

    MATH  Google Scholar 

  6. R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer, Dordrecht, 1995)

    Book  Google Scholar 

  7. P. Borckmans, G. Dewell, A. De wit, D. Walgraef, Turing bifurcations and pattern selection, in Chemical Waves and Patterns, Chap. 10 (Kluwer, Dordrecht, 1995), pp. 325–363

    Google Scholar 

  8. Y.I. Balkarei, A.V. Grigor’yants, Y.A. Rzhanov, M.I. Elinson, Regenerative oscillations, spatial-temporal single pulses and static inhomogeneous structures in optically bistable semiconductors. Opt. Commun. 66 (2–3), 161–166 (1988)

    Article  Google Scholar 

  9. D.B. White, The planforms and onset of convection with a temperature-dependent viscosity. J. Fluid Mech. 191 (1), 247–286 (1988)

    Article  Google Scholar 

  10. T. Nozakura, S. Ikeuchi, Formation of dissipative structures in galaxies. Astrophys. J. 279, 40–52 (1984)

    Article  Google Scholar 

  11. B. Futcher, G.I. Latter, P. Monardo, C.S. McLaughlin, J.I. Garrels, A sampling of the yeast proteome. Mol. Cell. Biol. 19 (11), 7357 (1999)

    Google Scholar 

  12. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North Holland, Amsterdam, 2007)

    MATH  Google Scholar 

  13. S. Cornell, M. Droz, B. Chopard, Role of fluctuations for inhomogeneous reaction-diffusion phenomena. Phys. Rev. A 44, 4826–4832 (1991)

    Article  Google Scholar 

  14. A. Fick, On liquid diffusion. Philos. Mag. J. Sci. 10 (1), 31–39 (1855)

    MathSciNet  Google Scholar 

  15. J.D. Murray, E.A. Stanley, D.L. Brown, On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B. Biol. 229 (1255), 111–150 (1986)

    Article  Google Scholar 

  16. A. Okubo, P.K. Maini, M.H. Williamson, J.D. Murray, On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. B. Biol. 238 (1291), 113 (1989)

    Google Scholar 

  17. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, How long can we survive? in Mathematical Modelling of Zombies, Chap. 6 (University of Ottawa Press, Ottawa, 2014)

    Google Scholar 

  18. J.D. Murray, Mathematical Biology I: An Introduction, vol. 1, 3rd edn. (Springer, Heidelberg, 2003)

    Google Scholar 

  19. R. Erban, S.J. Chapman, Reactive boundary conditions for stochastic simulations of reaction–diffusion processes. Phys. Biol. 4, 16 (2007)

    Article  Google Scholar 

  20. T.E. Woolley, R.E. Baker, P.K. Maini, J.L. Aragón, R.A. Barrio, Analysis of stationary droplets in a generic Turing reaction-diffusion system. Phys. Rev. E 82 (5), 051929 (2010)

    Google Scholar 

  21. T.E. Woolley, Spatiotemporal behaviour of stochastic and continuum models for biological signalling on stationary and growing domains. Ph.D. thesis, University of Oxford, 2011

    Google Scholar 

  22. R.A. Barrio, R.E. Baker, B. Vaughan Jr, K. Tribuzy, M.R. de Carvalho, R. Bassanezi, P.K. Maini, Modeling the skin pattern of fishes. Phys. Rev. E 79 (3), 31908 (2009)

    Google Scholar 

  23. R. Dillon, P.K. Maini, H.G. Othmer, Pattern formation in generalized Turing systems. J. Math. Biol. 32 (4), 345–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.C.B. Petersen, An identification system for zebra (Equus burchelli, Gray). Afr. J. Ecol. 10 (1), 59–63 (1972)

    Article  Google Scholar 

  25. P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney, S.S. Lee, Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2 (4), 487–496 (2012)

    Article  Google Scholar 

  26. T.E. Woolley, Mighty morphogenesis, in 50 Visions of Mathematics, Chap. 48 (Oxford University Press, Oxford, 2014)

    Google Scholar 

  27. H. Meinhardt, P. Prusinkiewicz, D.R. Fowler, The Algorithmic Beauty of Sea Shells (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  28. S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)

    Article  Google Scholar 

  29. S.W. Cho, S. Kwak, T.E. Woolley, M.J. Lee, E.J. Kim, R.E. Baker, H.J. Kim, J.S. Shin, C. Tickle, P.K. Maini, H.S. Jung, Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development 138, 1807–1816 (2011)

    Article  Google Scholar 

  30. R. Sheth, L. Marcon, M.F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, M.A. Ros, How genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338 (6113), 1476–1480 (2012)

    Article  Google Scholar 

  31. P. Arcuri, J.D. Murray, Pattern sensitivity to boundary and initial conditions in reaction-diffusion models. J. Math. Biol. 24 (2), 141–165 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. E.J. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61 (6), 1093–1120 (1999)

    Article  MATH  Google Scholar 

  33. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Power spectra methods for a stochastic description of diffusion on deterministically growing domains. Phys. Rev. E 84 (2), 021915 (2011)

    Google Scholar 

  34. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise. Phys. Rev. E 84 (4), 041905 (2011)

    Google Scholar 

  35. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E 84 (4), 046216 (2011)

    Google Scholar 

  36. J.L. Aragón, R.A. Barrio, T.E. Woolley, R.E. Baker, P.K. Maini, Nonlinear effects on Turing patterns: time oscillations and chaos. Phys. Rev. E 86 (2), 026201 (2012)

    Google Scholar 

  37. C.N. Tennyson, H.J. Klamut, R.G. Worton, The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9 (2), 184–190 (1995)

    Article  Google Scholar 

  38. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, S. Seirin-Lee, Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85 (5), 051914 (2012)

    Google Scholar 

  39. E.A. Gaffney, N.A.M. Monk, Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol. 68 (1), 99–130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.S. Lee, E.A. Gaffney, Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays. Bull. Math. Biol. 72, 2161–2179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. S.S. Lee, E.A. Gaffney, R.E. Baker, The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Bull. Math. Biol. 73 (11), 2527–2551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. R.G. Plaza, F. Sanchez-Garduno, P. Padilla, R.A. Barrio, P.K. Maini, The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ. 16 (4), 1093–1121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  44. C.B. Macdonald, S.J. Ruuth, The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31 (6), 4330–4350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. S.J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227 (3), 1943–1961 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. T.K. Callahan, E. Knobloch, Bifurcations on the fcc lattice. Phys. Rev. E 53 (4), 3559–3562 (1996)

    Article  MathSciNet  Google Scholar 

  47. T. Leppänen, M. Karttunen, K. Kaski, R.A. Barrio, L. Zhang, A new dimension to Turing patterns. Physica D 168, 35–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. E. Dulos, P. Davies, B. Rudovics, P. De Kepper, From quasi-2D to 3D Turing patterns in ramped systems. Physica D 98 (1), 53–66 (1996)

    Article  MATH  Google Scholar 

  49. S. Muraki, E.B. Lum, K.-L. Ma, M. Ogata, X. Liu, A PC cluster system for simultaneous interactive volumetric modeling and visualization, in Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and Graphics (2003), p. 13

    Google Scholar 

  50. S.L. Judd, M. Silber, Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse. Physica D 136 (1–2), 45–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. T.K. Callahan, E. Knobloch, Pattern formation in three-dimensional reaction–diffusion systems. Physica D 132 (3), 339–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices. Nonlinearity 10 (5), 1179–1216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. T. Leppänen, M. Karttunen, R.A. Barrio, K. Kaski, Morphological transitions and bistability in Turing systems. Phys. Rev. E. 70, 066202 (2004)

    Article  Google Scholar 

  54. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716 (2001)

    Article  Google Scholar 

  55. M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119 (24), 12784–12794 (2003)

    Article  Google Scholar 

  56. Y. Yang, M. Rathinam, Tau leaping of stiff stochastic chemical systems via local central limit approximation. J. Comput. Phys. 242, 581–606 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Klingbeil, R. Erban, M. Giles, P.K. Maini, STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for Matlab. Bioinformatics 27 (8), 1170–1171 (2011)

    Article  Google Scholar 

  58. R.A. Satnoianu, M. Menzinger, P.K. Maini, Turing instabilities in general systems. J. Math. Biol. 41 (6), 493–512 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. V. Klika, R.E. Baker, D. Headon, E.A. Gaffney, The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation. B. Math. Biol. 74 (4), 935–957 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun. ACM 51 (1), 107–113 (2008)

    Article  Google Scholar 

  61. T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2 (1), 343–372 (2001)

    Article  Google Scholar 

  62. M.W. Covert, B.O. Palsson, Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221 (3), 309–325 (2003)

    Article  MathSciNet  Google Scholar 

  63. O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, P.K. Maini, R. Erban, DifFUZZY: a fuzzy clustering algorithm for complex datasets. Int. J. Comput. Intel. Bioinf. Syst. Biol. 1 (4), 402–417 (2010)

    Google Scholar 

  64. H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgöwer, E.D. Gilles, Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. 1 (1), 159–169 (2004)

    Article  Google Scholar 

  65. O. Radulescu, A.N. Gorban, A. Zinovyev, A. Lilienbaum, Robust simplifications of multiscale biochemical networks. BMC Syst. Biol. 2 (1), 86 (2008)

    Google Scholar 

  66. L. Marcon, X. Dirego, J. Sharpe, P. Muller, High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5, e14022 (2016)

    Article  Google Scholar 

  67. W. Weber, J. Stelling, M. Rimann, B. Keller, M. Daoud-El Baba, C.C. Weber, D. Aubel, M. Fussenegger, A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl. Acad. Sci. 104 (8), 2643–2648 (2007)

    Article  Google Scholar 

  68. E. Fung, W.W. Wong, J.K. Suen, T. Bulter, S. Lee, J.C. Liao, A synthetic gene–metabolic oscillator. Nature 435 (7038), 118–122 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

TEW would like to thank St John’s College Oxford for its financial support. This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). The cheetah and lemur photos were used under the Attribution-ShareAlike 2.0 license and were downloaded from http://www.flickr.com/photos/53936799@N05/ and http://www.flickr.com/photos/ekilby/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Woolley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Woolley, T.E., Baker, R.E., Maini, P.K. (2017). Turing’s Theory of Morphogenesis: Where We Started, Where We Are and Where We Want to Go. In: Cooper, S., Soskova, M. (eds) The Incomputable. Theory and Applications of Computability. Springer, Cham. https://doi.org/10.1007/978-3-319-43669-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43669-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43667-8

  • Online ISBN: 978-3-319-43669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics