Skip to main content

Biophysical Methods of Detection and Quantification of Uptake, Translocation, and Accumulation of Nanoparticles

  • Chapter
  • First Online:
  • 2074 Accesses

Abstract

Manufactured nanomaterials (MNMs) are more frequently found in consumer products as well as in industrial and agricultural applications. The high volume of production, use, and disposal of MNM-containing wastes increase the probability of release of these products to the environment. An ever-increasing number of articles have shown that MNMs impact plants and other organisms in different ways. In this chapter, we discuss the biophysical methods currently used to measure the uptake, translocation, accumulation, and speciation of MNMs within plants. We included methods used to analyze plants exposed to carbon-based and metal-based MNMs. Advantages and disadvantages of each analytical technique are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla MH, Nafady NA, Khalaf DM (2016) Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule. Agr Ecosyst Environ 218:163–177. doi:10.1016/j.agee.2015.11.022

    Article  CAS  Google Scholar 

  • Abraham PM, Barnikol S, Baumann T, Kuehn M, Ivleva NP, Schaumann GE (2013) Sorption of silver nanoparticles to environmental and model surfaces. Environ Sci Technol 47(10):5083–5091. doi:10.1021/es303941e

    Article  CAS  PubMed  Google Scholar 

  • Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16(6):R65–R92. doi:10.1088/0957-0233/16/6/R01

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch Eur J Physiol 456(1):211–225. doi:10.1007/s00424-007-0406-0

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414. doi:10.1146/annurev-biophys-083012-130324

    Article  CAS  PubMed  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705. doi:10.1016/j.talanta.2014.08.050

    Article  PubMed  CAS  Google Scholar 

  • Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M (2015) Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem 166:76–85. doi:10.1016/j.foodchem.2014.05.139

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Plascencia-Villa G, José-Yacamán M, Gardea-Torresdey JL (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241–242:379–386. doi:10.1016/j.jhazmat.2012.09.056

    Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 3030(3):118–125. doi:10.1089/ees.2012.0325

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69. doi:10.1016/j.scitotenv.2015.02.014

    Article  PubMed  CAS  Google Scholar 

  • Benıtez JJ, Matas AJ, Heredia A (2004) Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques. J Struct Biol 147(2):179–184. doi:10.1016/j.jsb.2004.03.006

    Article  PubMed  CAS  Google Scholar 

  • Bertsch PM, Hunter DB (2001) Applications of synchrotron-based X-ray microprobes. Chem Rev 101(6):1809–1842. doi:10.1021/cr990070s

    Article  CAS  PubMed  Google Scholar 

  • Boss CB, Fredeen KJ (2004) Concepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry. Perkin Elmer

    Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931. doi:10.1897/08-117.1

    Google Scholar 

  • Cohen SR, Bitler A (2008) Use of AFM in bio-related systems. Curr Opin Colloid Interface Sci 13(5):316–325. doi:10.1016/j.cocis.2008.02.002

    Article  CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8(2):e57189. doi:10.1371/journal.pone.0057189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui D, Zhang P, Ma Y, He X, Li Y, Zhang J, Zhao Y, Zhang Z (2014) Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1(5):459–465. doi:10.1039/c4en00025k

    Article  CAS  Google Scholar 

  • Dan Y, Zhang W, Xue R, Ma X, Stephan C, Shi H (2015) Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ Sci Technol 49(5):3007–3014. doi:10.1021/es506179e

    Article  CAS  PubMed  Google Scholar 

  • De La Rosa G, López-Moreno ML, Hernandez-Viezcas JA, Montes MO, Peralta-Videa J, Gardea-Torresdey J (2011) Toxicity and biotransformation of ZnO nanoparticles in the desert plants Prosopis juliflora-velutina, Salsola tragus and Parkinsonia florida. Int J Nanotechnol 8(6):492–506. doi:10.1504/IJNT.2011.04019

    Article  Google Scholar 

  • Degueldre C, Favarger PY (2003) Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloid Surf A 217(1–3):137–142. doi:10.1016/S0927-7757(02)00568-X

    Article  CAS  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47(9):4734–4742. doi:10.1021/es304736y

    Article  CAS  PubMed  Google Scholar 

  • Donner E, Punshon T, Guerinot ML, Lombi E (2012) Functional characterisation of metal (loid) processes in plants through the integration of synchrotron techniques and plant molecular biology. Anal Bioanal Chem 402(10):3287–3298. doi:10.1007/s00216-011-5624-9

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828. doi:10.1039/C0EM00611D

    Article  CAS  PubMed  Google Scholar 

  • Dubascoux S, Le Hecho I, Hassellov M, Von Der Kammer F, Potin Gautier M, Lespes G (2010) Field-flow fractionation and inductively coupled plasma mass spectrometer coupling: history, development and applications. J Anal Atom Spectrom 25(5):613–623. doi:10.1039/B927500B

    Article  CAS  Google Scholar 

  • Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, Boxall ABA, Molhave K (2011) Characterization of nanomaterials in food by electron microscopy. Trends Anal Chem 30(1):28–43. doi:10.1016/j.trac.2010.10.007

    Article  CAS  Google Scholar 

  • Dudkiewicz A, Boxall ABA, Chaudhry Q, Mølhave K, Tiede K, Hofmann P, Linsinger TPJ (2015) Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chem 176:472–479. doi:10.1016/j.foodchem.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  • Elzey SR (2010) Applications and physicochemical characterization of nanomaterials in environmental, health, and safety studies. Ph.D. (Doctor of Philosophy) Thesis, University of Iowa, USA. http://ir.uiowa.edu/etd/494

  • Ensikat HJ, Ditsche-Kuru P, Barthlott W (2010) Scanning electron microscopy of plant surfaces: simple but sophisticated methods for preparation and examination. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education, FORMATEX, pp 248–255

    Google Scholar 

  • Fahrni CJ (2009) Fluorescent probes for two-photon excitation microscopy. In: Reviews in fluorescence 2007, Springer, pp 249–269. doi:10.1007/978-0-387-88722-7_11

    Google Scholar 

  • Fendorf SE, Sparks DL, Lamble GM, Kelley MJ (1994) Applications of X-ray absorption fine structure spectroscopy to soils. Soil Sci Am J 58(6):1583–1595

    Article  CAS  Google Scholar 

  • Gaczynska M, Osmulski PA (2008) AFM of biological complexes: what can we learn? Curr Opin Colloid Interface Sci 13(5):351–367. doi:10.1016/j.cocis.2008.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401. doi:10.1021/nl015673+

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835i

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48(5):2526–2540. doi:10.1021/es4050665

    Article  CAS  PubMed  Google Scholar 

  • Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1):3–5. doi:10.1038/nnano.2006.70

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619. doi:10.1016/j.chemosphere.2014.07.049

    Article  CAS  PubMed  Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562–2569. doi:10.1021/es103300g

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(1–3):346–352. doi:10.1016/j.cej.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423. doi:10.1021/nn305196q

    Article  CAS  PubMed  Google Scholar 

  • Hischemöller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5(3):278–284. doi:10.1166/jbn.2009.1032

    Article  PubMed  CAS  Google Scholar 

  • Inoué S (2010) Foundations of confocal scanned imaging in light microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, NY, USA, pp 1–19

    Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781. doi:10.1021/es103031a

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Karydas AG, Sokaras D, Zarkadas C, Grlj N, Pelicon P, Zitnik M, Schutz R, Malzer W, Kanngie (2007) 3D Micro PIXE—a new technique for depth-resolved elemental analysis. J Anal At Spectrom 22(10):1260–1265. doi:10.1039/b700851c

    Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033. doi:10.1002/smll.201201225

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123. doi:10.1002/smll.201201225

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851. doi:10.1897/08-090.1

    Article  CAS  PubMed  Google Scholar 

  • Klapetek P, Valtr M, Nečas D, Salyk O, Dzik P (2011) Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res Lett 6(1):1–9. doi:10.1186/1556-276X-6-514

    Article  CAS  Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228. doi:10.1016/j.envpol.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  • Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 165:127–132

    Article  CAS  PubMed  Google Scholar 

  • Krautbauer R, Rief M, Gaub HE (2003) Unzipping DNA oligomers. Nano Lett 3(4):493–496. doi:10.1021/nl034049p

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621. doi:10.1016/j.jhazmat.2011.03.095

    Article  CAS  PubMed  Google Scholar 

  • Laborda F, Jimenez-Lamana J, Bolea E, Castillo JR (2011) Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 26(7):1362–1371. doi:10.1039/C0JA00098A

    Article  CAS  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619. doi:10.1016/j.carbon.2014.09.095

    Article  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank A, Fayard B, Chaillou S, Carriere M (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057. doi:10.1088/1742-6596/304/1/012057

    Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi:10.1016/j.scitotenv.2012.04.073

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012b) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–163. doi:10.1016/j.jhazmat.2012.05.033

    Article  PubMed  CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264(98–106):106. doi:10.1016/j.jhazmat.2013.10.053

    Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26. doi:10.1016/j.jhazmat.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670. doi:10.1016/j.chemosphere.2015.09.028

    Article  PubMed  CAS  Google Scholar 

  • Lee P-L, Chen B-C, Gollavelli G, Shen S-Y, Yin Y-S, Lei S-L, Jhang C-L, Lee W-R, Ling Y-C (2014) Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells. J Hazard Mater 277:3–12. doi:10.1016/j.jhazmat.2014.03.046

    Article  CAS  PubMed  Google Scholar 

  • Lenaghan SC, Zhang M (2012) Real-time observation of the secretion of a nanocomposite adhesive from English ivy (Hedera helix). Plant Sci 183:206–211. doi:10.1016/j.plantsci.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sillanpää M, Tuominen M, Lounatmaa K, Schultz E (2013) Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 88:89–94. doi:10.1016/j.ecoenv.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132. doi:10.1002/smll.200801556

    CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010. doi:10.1021/nl803083u

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320(1–2):1–35. doi:10.1007/s11104-008-9876-x

    Article  CAS  Google Scholar 

  • Lombi E, Scheckel KG, Kempson IM (2011) In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot 72(1):3–17. doi:10.1016/j.envexpbot.2010.04.005

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320. doi:10.1021/es903891g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693. doi:10.1021/jf904472e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Q, He ZL, Stoffella PJ (2012) Land application of biosolids in the USA: a review. App Environ Soil Sci 2012. doi:10.1155/2012/201462

    Google Scholar 

  • Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agri Food Chem 56(18):8231–8247. doi:10.1021/jf8013926

    Article  CAS  Google Scholar 

  • Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77. doi:10.1039/c4en00064a

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, Xu Z, Zhang L, Ding Y, Zhao Y, Chai Z (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753. doi:10.3109/17435390.2010.545487

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Castillo-Michel H, Hong J, Rico CM, Gardea-Torresdey JL (2012) Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: A review. Anal Chim Acta 755:1–16. doi:10.1016/j.aca.2012.09.050

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas J-A, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287. doi:10.1016/j.jhazmat.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Mbundi L, Gallar-Ayala H, Rizwan Khan MR, Barber JL, Losada S, Busquets R (2014) Chapter two—advances in the analysis of challenging food contaminants: nanoparticles, bisphenols, mycotoxins, and brominated flame retardants. Adv Mol Toxicol 8:42–45

    Google Scholar 

  • McPherson A, Malkin A, Kuznetsov YG (2000) Atomic force microscopy in the study of macromolecular crystal growth. Annu Rev Biophys Biomol Struct 29(1):361–410

    Article  CAS  PubMed  Google Scholar 

  • Min W, Freudiger CW, Lu S, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu Rev Phys Chem 62:507. doi:10.1146/annurev.physchem.012809.103512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitrano DM, Barber A, Bednar A, Westerhoff P, Higgins CP, Ranville JF (2012) Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J Anal Atom Spectrom 27(7):1131–1142. doi:10.1039/C2JA30021D

    Article  CAS  Google Scholar 

  • Mokgalaka NS, Gardea-Torresdey JL (2006) Laser ablation inductively coupled plasma mass spectrometry: Principles and applications. Appl Spectrosc Rev 41(2):131–150. doi:10.1080/05704920500510703

    Article  CAS  Google Scholar 

  • Müller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269. doi:10.1038/nnano.2008.100

    Article  PubMed  CAS  Google Scholar 

  • Palomo-Siguero M, Lopez-Heras MI, Camara C, Madrid Y (2015) Accumulation and biotransformation of chitosan-modified selenium nanoparticles in exposed radish (Raphanus sativus). J Anal Atom Spectrom 30:1237–1244. doi:10.1039/C4JA00407H

    Article  CAS  Google Scholar 

  • Pathan AK, Bond J, Gaskin RE (2008) Sample preparation for scanning electron microscopy of plant surfaces—horses for courses. Micron 39(8):1049–1061. doi:10.1016/j.micron.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  • Patty C, Barnett B, Mooney B, Kahn A, Levy S, Liu Y, Pianetta P, Andrews JC (2009) Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass. Environ Sci Technol 43(19):7397–7402. doi:10.1021/es901076q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15. doi:10.1016/j.jhazmat.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1–11. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47(22):13122–13131. doi:10.1021/es402659t

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118. doi:10.1021/es4033887

    Article  CAS  PubMed  Google Scholar 

  • Roco MC, Bainbridge WS (2013) The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society. J Nanopart Res 15(9):1–17. doi:10.1007/s11051-013-1946-1

  • Roming AD (1986) Electron optical methods. In: Materials characterization asm handbook, 9th edn. ASM International, The Materials Information Society, vol. 10. pp 429–536

    Google Scholar 

  • Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166. doi:10.1161/01.RES.0000150593.30324.42

    Article  CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360. doi:10.3109/17435390.2011.579631

    Article  CAS  PubMed  Google Scholar 

  • Salamon AW, Courtney P, Shuttler I (2010) A primer. In: Frequently asked questions, nanotechnology and engineered material, Available via Perkin Elmer http://www.perkinelmer.com/Content/Manuals/GDE_NanotechnologyPrimer.pdf. Accessed 5 Feb 2015

  • Sarret G, Smits EAHP, Michel HC, Isaure MP, Zhao FJ, Tappero R (2013) Chapter 1—Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. In: Donald LS (ed) Adv Agron 119:1–82. doi:10.1016/B978-0-12-407247-3.00001-9

    Google Scholar 

  • Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J (2015) Understanding the fate and biological effects of Ag − and TiO2−nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535(1):3–19. doi:10.1016/j.scitotenv.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  • Scheckel K, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 290(1–2):51–60. doi:10.1007/s11104-006-9102-7

    Article  CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46(14):7637–7643. doi:10.1021/es300955b

    Article  CAS  PubMed  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598. doi:10.1021/es403368j

    Article  CAS  PubMed  Google Scholar 

  • Skoog D, Holler F, Nieman T (1998) Principles of instrumental analysis. 5th edn. Harcourt Brace, Orlando, FL, USA, pp 231–235, 262–263

    Google Scholar 

  • Stutzmann GE, Parker I (2005) Dynamic multiphoton imaging: a live view from cells to systems. Physiology 20(1):15–21. doi:10.1152/physiol.00028.2004

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402. doi:10.1007/s00299-014-1624-5

    Article  CAS  PubMed  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793. doi:10.1371/journal.pone.0093793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas R (2013) Practical guide to ICP-MS: a tutorial for beginners. CRC Press, Boca Raton, FL, USA, pp 1–4

    Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821. doi:10.1080/02652030802007553

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa J, Gardea-Torresdey J (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503. doi:10.1016/j.jhazmat.2013.11.067

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soil and cowpea (Vigna unguiculata). Environ Sci Technol 47(23):13822–13830. doi:10.1021/es403466p

    Article  CAS  PubMed  Google Scholar 

  • Whited AM, Park PSH (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838(1):56–68. doi:10.1016/j.bbamem.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43(14):5290–5294. doi:10.1021/es900065h

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Baskin TI, Gallagher KL (2012) Mechanical fixation techniques for processing and orienting delicate samples, such as the root of Arabidopsis thaliana, for light or electron microscopy. Nat Protocols 7(6):1113–1124. doi:http://www.nature.com/nprot/journal/v7/n6/abs/nprot.2012.056.html#supplementary-information. Accessed 5 June 2015

  • Yan D, Zhao Y, Lu A, Wang S, Xu D, Zhang P (2013) Effects of accompanying anions on cesium retention and translocation via droplets on soybean leaves. J Environ Radioact 126:232–238

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wang Y, Lai S, An H, Li Y, Chen F (2007) Application of atomic force microscopy as a nanotechnology tool in food science. J Food Sci 72(4):R65–R75. doi:10.1111/j.1750-3841.2007.00346.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wu S-C, Zhou W, Xu B (2012a) Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose. J Phys Chem B 116(33):9949–9956. doi:10.1021/jp304686q

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai R, Ding Y, Zhao Y, Chai Z (2012b) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841. doi:10.1021/es2027295

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012c) Biotransformation of ceria nanoparticles in cucumber Plants. ACS Nano 6(11):9943–9950. doi:10.1021/nn303543n

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z, He X, Li Y, Zhang J, Zheng L, Zhao Y (2015) Species-specific toxicity of ceria nanoparticles to Lactuca plants. Nanotoxicology 9(1):1–8. doi:10.3109/17435390.2013.855829

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8. doi:10.1016/j.cej.2012.01.041

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–138. doi:10.1016/j.jhazmat.2012.05.008

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agri Food Chem 61(49):11945–11951. doi:10.1021/jf404328e

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agri Food Chem 62(13):2752–2759. doi:10.1021/jf405476u

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in Situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49(5):2921–2928. doi:10.1021/es5060226

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717. doi:10.1039/B805998E

    Article  CAS  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377. doi:10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation and the Environmental Protection Agency under Cooperative Agreement Number DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to EPA review, and no official endorsement should be inferred. This work was also supported by Grant 2G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). Authors also acknowledge the USDA grant number 2011-38422-30835 and the NSF Grants # CHE-0840525 and DBI 1429708. Partial funding was provided by the NSF ERC on Nanotechnology-Enable Water Treatment (EEC-1449500). J. L. Gardea-Torresdey acknowledges the Dudley family for the Endowed Research Professorship, the Academy of Applied Science/US Army Research Office, Research and Engineering Apprenticeship program (REAP) at UTEP, grant # W11NF-10-2-0076, sub-grant 13-7, and STARs programs of the University of Texas System. N. Zuverza-Mena and I.A. Medina-Velo thank the support of Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Gardea-Torresdey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Medina-Velo, I.A., Zuverza-Mena, N., Tan, W., Hernandez-Viezcas, J.A., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2016). Biophysical Methods of Detection and Quantification of Uptake, Translocation, and Accumulation of Nanoparticles. In: Kole, C., Kumar, D., Khodakovskaya, M. (eds) Plant Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-42154-4_3

Download citation

Publish with us

Policies and ethics