Skip to main content

Fabrication and Printing of Multi-material Hydrogels

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Bioprinting has emerged over the past decade as a prominent technology in the field of tissue engineering. This enables fabrication of cell-laden hydrogels with precise control over the architecture of the scaffold and the location of cells, growth factors, and other biological cues of interest. We first discuss the challenges that exist in terms of choosing a bioprinter, ensuring mechanical support and printability of a material, and minimizing cellular stress for cell-laden prints. We then explain the different crosslinking methods commonly used in hydrogel printing and approaches to alter bioink crosslinking mechanisms. We discuss material selection for bioprinting with elaboration on common materials that have been used and a review of multi-material prints involving hydrogels. We also explore the use of a single, mixed bioink to fabricate complex but homogeneous constructs and multiple, independent bioinks to fabricate complex heterogeneous tissue constructs within the multi-material review. We conclude with a summary of the current state of the field and an outlook on future research.

This is a preview of subscription content, log in via an institution.

References

  • Ahearne M, Coyle A (2016) Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater 54:259–267. doi:10.1016/j.jmbbm.2015.09.035

    Article  CAS  PubMed  Google Scholar 

  • Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M (2015) 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 27:264–274. doi:10.1016/j.actbio.2015.08.036

    Article  CAS  PubMed  Google Scholar 

  • Andrzejewska E (2001) Photopolymerization kinetics of multifunctional monomers. Prog Polym Sci 26:605–665. doi:10.1016/S0079-6700(01)00004-1

    Article  CAS  Google Scholar 

  • Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441. doi:10.1007/s10439-006-9156-y

    Article  PubMed  Google Scholar 

  • Bakarich SE, in het Panhuis M, Beirne S, Wallace GG, Spinks GM (2013) Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. J Mater Chem B 1:4939. doi:10.1039/c3tb21159b

    Article  CAS  Google Scholar 

  • Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004) Application of laser printing to mammalian cells. Thin Solid Films 453–454:383–387. doi: 10.1016/j.tsf.2003.11.161

    Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34. doi:10.1016/S0939-6411(03)00161-9

    Article  CAS  PubMed  Google Scholar 

  • Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A (2014a) Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6:024105. doi:10.1088/1758-5082/6/2/024105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014b) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211. doi:10.1039/c4lc00030g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62. doi:10.1016/j.biomaterials.2013.09.078

    Article  CAS  PubMed  Google Scholar 

  • Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 3:326–333

    Article  CAS  Google Scholar 

  • Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457. doi:10.1163/156856200743805

    Article  CAS  PubMed  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56. doi:10.1002/adma.201003963

    Article  CAS  Google Scholar 

  • Carolina N (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1:792–802. doi:10.5966/sctm.2012-0088

    Article  CAS  Google Scholar 

  • Cha C, Soman P, Zhu W, Nikkhah M, Camci-Unal G, Chen S, Khademhosseini A (2014) Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomater Sci 2:703–709. doi:10.1039/C3BM60210A

    Article  CAS  PubMed  Google Scholar 

  • Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070. doi:10.1039/c004285d

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-C, Lin R-Z, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039. doi:10.1002/adfm.201101662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JHY, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE, Wallace GG (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1:763. doi:10.1039/c3bm00012e

    Article  CAS  Google Scholar 

  • Cohen DL, Lipton JI, Bonassar LJ, Lipson H (2010) Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2:035004. doi:10.1088/1758-5082/2/3/035004

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18:1304–1312. doi:10.1089/ten.TEA.2011.0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246. doi:10.1016/j.actbio.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  • Davey SK, Aung A, Agrawal G, Lim HL, Kar M, Varghese S (2015) Embedded 3D photopatterning of hydrogels with diverse and complex architectures for tissue engineering and disease models. Tissue Eng Part C Methods 21:1188–1196. doi:10.1089/ten.TEC.2015.0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10:1316–1322. doi:10.1089/ten.2004.10.1316

    Article  CAS  PubMed  Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101 A:1255–1264. doi:10.1002/jbm.a.34420

    Article  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846. doi:10.1016/j.actbio.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  • Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV (2011) Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7:3850–3856. doi:10.1016/j.actbio.2011.06.039

    Article  CAS  PubMed  Google Scholar 

  • Elomaa L, Pan C-C, Shanjani Y, Malkovskiy A, Seppälä JV, Yang Y (2015) Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J Mater Chem B 3:8348–8358. doi:10.1039/C5TB01468A

    Article  CAS  Google Scholar 

  • Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7:044102. doi:10.1088/1758-5090/7/4/044102

    Article  PubMed  Google Scholar 

  • Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJA (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng Part A 14:127–133. doi:10.1089/ten.a.2007.0158

    Article  CAS  PubMed  Google Scholar 

  • Fedorovich NE, Wijnberg HM, Dhert WJ, Alblas J (2011) Distinct tissue formation by heterogeneous printing of osteo – and endothelial progenitor cells. Tissue Eng Part A 17:2113–2121. doi:10.1089/ten.tea.2011.0019

    Article  PubMed  Google Scholar 

  • Fedorovich NE, Schuurman W, Wijnberg HM, Prins H-J, van Weeren PR, Malda J, Alblas J, Dhert WJA (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18:33–44. doi:10.1089/ten.TEC.2011.0060

    Article  CAS  PubMed  Google Scholar 

  • Ferlin KM, Prendergast ME, Miller ML, Kaplan DS, Fisher JP (2016) Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomater 32:161–169. doi:10.1016/j.actbio.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  • Ferris CJ, Gilmore KG, Wallace GG, In Het Panhuis M (2013a) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97:4243–4258

    Article  CAS  PubMed  Google Scholar 

  • Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M (2013b) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224. doi:10.1039/c2bm00114d

    Article  CAS  Google Scholar 

  • Florián-Algarín V, Acevedo-Rullán A, Co A, Leal GL, Colby RH, Giacomin AJ (2008) Rheology and gelation temperature of aqueous gelatin and sodium alginate solutions. In: AIP Conference Proceedings. AIP, pp 618–620

    Google Scholar 

  • Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348. doi:10.1016/j.biomaterials.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  • Galante R, Paradiso P, Moutinho MG, Fernandes AI, Mata JLG, Matos APA, Colaço R, Saramago B, Serro AP (2015) About the effect of eye blinking on drug release from pHEMA-based hydrogels: an in vitro study. J Biomater Sci Polym Ed 26:235–251. doi: 10.1080/09205063.2014.994948

    Google Scholar 

  • Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, Dai G, Cui X (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37:2349–2355. doi:10.1007/s10529-015-1921-2

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10:1568–1577. doi:10.1002/biot.201400635

    Article  CAS  PubMed  Google Scholar 

  • García-Millán E, Koprivnik S, Otero-Espinar FJ (2015) Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int J Pharm 487:260–269. doi:10.1016/j.ijpharm.2015.04.037

    Article  PubMed  CAS  Google Scholar 

  • Hanson Shepherd JN, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv Funct Mater 21:47–54. doi:10.1002/adfm.201001746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He P, Liu Y, Qiao R (2014) Fluid dynamics of the droplet impact processes in cell printing. Microfluid Nanofluidics 18:569–585. doi:10.1007/s10404-014-1470-3

    Article  CAS  Google Scholar 

  • Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27:5075–5079. doi:10.1002/adma.201501234

    Article  CAS  PubMed  Google Scholar 

  • Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1:1–10. doi:10.1126/sciadv.1500758

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007. doi:10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  • Hockaday LA, Kang KH, Colangelo NW, Cheung PYC, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005. doi:10.1088/1758-5082/4/3/035005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040. doi:10.1002/adma.201501099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh F-Y, Lin H-H, Hsu S-H (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57. doi:10.1016/j.biomaterials.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, Lee M (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8:1730–1738. doi:10.1016/j.actbio.2012.01.029

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. doi:10.1016/S0092-8674(02)00971-6

    Article  CAS  PubMed  Google Scholar 

  • Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369–2385. doi:10.1089/ten.2007.0093

    Article  CAS  PubMed  Google Scholar 

  • Jung JW, Lee J-S, Cho D-W (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6:21685. doi:10.1038/srep21685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesti M, Müller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, Zenobi-Wong M (2015) A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 11:162–172. doi:10.1016/j.actbio.2014.09.033

    Article  CAS  PubMed  Google Scholar 

  • Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 27:469–478. doi:10.1016/j.msec.2006.05.023

    Article  CAS  Google Scholar 

  • Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855–1863. doi:10.1002/bit.24455

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. doi:10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  • Kundu J, Shim J-H, Jang J, Kim S-W, Cho D-W (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9:1286–1297. doi:10.1002/term.1682

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595. doi:10.1016/j.biomaterials.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-B, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo S-S (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223:645–652. doi:10.1016/j.expneurol.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Ahn S, Bonassar LJ, Kim G (2013) Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun 34:142–149. doi:10.1002/marc.201200524

    Article  CAS  PubMed  Google Scholar 

  • Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G (2014) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7:460–472. doi:10.1007/s12195-014-0340-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW (2016) Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8:15007. doi:10.1088/1758-5090/8/1/015007

    Article  CAS  Google Scholar 

  • Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020. doi:10.1088/1758-5082/6/3/035020

    Article  PubMed  CAS  Google Scholar 

  • Li B, Wang L, Xu F, Gang X, Demirci U, Wei D, Li Y, Feng Y, Jia D, Zhou Y (2015) Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater 22:59–69. doi:10.1016/j.actbio.2015.04.026

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW-M, Tuan RS (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34:331–339. doi:10.1016/j.biomaterials.2012.09.048

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F (2015) Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 7:044105. doi:10.1088/1758-5090/7/4/044105

    Article  PubMed  Google Scholar 

  • Mapili G, Lu Y, Chen S, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater 75:414–424. doi:10.1002/jbm.b.30325

    Article  PubMed  CAS  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496. doi:10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Feijen J, Grijpma DW (2009) A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30:3801–3809. doi:10.1016/j.biomaterials.2009.03.055

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. doi:10.1016/j.biomaterials.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  • Melchels FPW, Dhert WJA, Hutmacher DW, Malda J (2014) Development and characterisation of a new bioink for additive tissue manufacturing. J Mater Chem B 2:2282. doi:10.1039/c3tb21280g

    Article  CAS  Google Scholar 

  • Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8:1838–1848. doi:10.1016/j.actbio.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Alm M, Hemmingsen M, Dolatshahi-Pirouz A, Trifol J, Thomsen P, Dufva M, Wolff A, Emnéus J (2016) 3D printed silicone-hydrogel scaffold with enhanced physicochemical properties. Biomacromolecules 17:1321. doi:10.1021/acs.biomac.5b01722

    Article  CAS  PubMed  Google Scholar 

  • Moraes C, Simon AB, Putnam AJ, Takayama S (2013) Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials 34:9623–9631. doi:10.1016/j.biomaterials.2013.08.046

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7:035006. doi:10.1088/1758-5090/7/3/035006

    Article  PubMed  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. doi:10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  • Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4:1168–1177. doi:10.1002/biot.200900004

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666. doi:10.1089/ten.2005.11.1658

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L, Yao R, Chen X, Na J, Sun W (2015a) 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication 7:015010. doi:10.1088/1758-5090/7/1/015010

    Article  PubMed  CAS  Google Scholar 

  • Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W (2015b) Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7:044101. doi:10.1088/1758-5090/7/4/044101

    Article  PubMed  Google Scholar 

  • Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104. doi:10.1088/1758-5082/2/1/014104

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Shim J-H, Choi S-A, Jang J, Kim M, Lee SH, Cho D-W (2015) 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J Mater Chem B 3:5415–5425. doi:10.1039/C5TB00637F

    Article  CAS  Google Scholar 

  • Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 24:391–396. doi:10.1002/adma.201102800

    Article  CAS  PubMed  Google Scholar 

  • Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, Kim D-H, Cho D-W (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935. doi:10.1038/ncomms4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pati F, Ha D-H, Jang J, Han HH, Rhie JW, Cho DW (2015) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175. doi:10.1016/j.biomaterials.2015.05.043

    Article  CAS  PubMed  Google Scholar 

  • Pereira RF, Bártolo PJ (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 132. doi: 10.1002/app.42458

    Google Scholar 

  • Petit V, Thiery J-P (2000) Focal adhesions: structure and dynamics. Biol Cell 92:477–494. doi:10.1016/S0248-4900(00)01101-1

    Article  CAS  PubMed  Google Scholar 

  • Pietrucha K (2005) Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol 36:299–304. doi:10.1016/j.ijbiomac.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339. doi:10.1016/S0169-409X(01)00203-4

    Article  CAS  PubMed  Google Scholar 

  • Rezende RA, Bártolo PJ, Mendes A, Filho RM (2009) Rheological behavior of alginate solutions for biomanufacturing. J Appl Polym Sci 113:3866–3871. doi:10.1002/app.30170

    Article  CAS  Google Scholar 

  • Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ (2004) Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng 10:483–491. doi: 10.1089/107632704323061843

    Google Scholar 

  • Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715. doi:10.1016/j.biomaterials.2003.10.052

    Article  CAS  PubMed  Google Scholar 

  • Rouillard AD, Berglund CM, Lee JY, Polacheck WJ, Tsui Y, Bonassar LJ, Kirby BJ (2011) Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Eng Part C Methods 17:173–179. doi:10.1089/ten.TEC.2009.0582

    Article  CAS  PubMed  Google Scholar 

  • Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27:1607–1614. doi:10.1002/adma.201405076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332. doi:10.1016/S0142-9612(02)00177-1

    Article  CAS  PubMed  Google Scholar 

  • Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001. doi:10.1088/1758-5082/3/2/021001

    Article  CAS  PubMed  Google Scholar 

  • Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FPW, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561. doi:10.1002/mabi.201200471

    Article  CAS  PubMed  Google Scholar 

  • Sher P, Oliveira SM, Borges J, Mano JF (2015) Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique. Biofabrication 7:011001. doi:10.1088/1758-5090/7/1/011001

    Article  PubMed  CAS  Google Scholar 

  • Shim J-H, Lee J-S, Kim JY, Cho D-W (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22:085014. doi:10.1088/0960-1317/22/8/085014

    Article  CAS  Google Scholar 

  • Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43:730–746. doi:10.1007/s10439-014-1207-1

    Article  PubMed  Google Scholar 

  • Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16:2675–2685. doi:10.1089/ten.TEA.2009.0798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576. doi:10.1089/ten.2004.10.1566

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13:373–383. doi:10.1089/ten.2006.0101

    Article  CAS  PubMed  Google Scholar 

  • Song SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, Choi H, Sun K (2011) Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Artif Organs 35:1132–1136. doi:10.1111/j.1525-1594.2011.01377.x

    Article  PubMed  Google Scholar 

  • Tabriz AG, Hermida MA, Leslie NR, Shu W (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7:045012. doi:10.1088/1758-5090/7/4/045012

    Article  PubMed  Google Scholar 

  • Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(215). doi:10.1186/gb-2007-8-5-215

    Google Scholar 

  • Tsai YC, Li S, SG H, Chang WC, Jeng US, Hsu SH (2015) Synthesis of thermoresponsive amphiphilic polyurethane gel as a new cell printing material near body temperature. ACS Appl Mater Interfaces 7:27613–27623. doi:10.1021/acsami.5b10697

    Article  CAS  PubMed  Google Scholar 

  • Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJA, Melchels FPW, Malda J (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:035007. doi:10.1088/1758-5082/5/3/035007

    Article  PubMed  CAS  Google Scholar 

  • Wallace J, Wang MO, Thompson P, Busso M, Belle V, Mammoser N, Kim K, Fisher JP, Siblani A, Xu Y, Welter JF, Lennon DP, Sun J, Caplan AI, Dean D (2014) Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication 6:015003. doi:10.1088/1758-5082/6/1/015003

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng 130:021012. doi:10.1115/1.2896118

    Article  Google Scholar 

  • Wang MO, Piard CM, Melchiorri A, Dreher ML, Fisher JP (2015a) Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds. Tissue Eng Part A 21:1642–1653. doi:10.1089/ten.TEA.2014.0495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang Y, Zhu J, Dong S, Jiang T, Zhou Y, Zhang X (2015b) In vitro investigation of a tissue-engineered cell-tendon complex mimicking the transitional architecture at the ligament-bone interface. J Biomater Appl 29:1180–1192. doi:10.1177/0885328214555168

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Wang J, Su S, Wang S, Qiu J, Zhang Z, Christopher G, Ning F, Cong W (2015) 3D printing of an extremely tough hydrogel. RSC Adv 5:81324–81329. doi:10.1039/C5RA16362E

    Article  CAS  Google Scholar 

  • Williams CG, Malik AN, Kim TK, Manson PN, Elisseeff JH (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218. doi:10.1016/j.biomaterials.2004.04.024

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang X (2015) Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel. Biotechnol Bioeng 112:1683–1695. doi:10.1002/bit.25579

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJJJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99. doi:10.1016/j.biomaterials.2004.04.011

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Zhao W, Atala A, Yoo JJ, Forest W, Salem W (2006) Bio-printing of living organized tissues using an inkjet technology. FASEB J 21:131–134

    Google Scholar 

  • Xu M, Wang X, Yan Y, Yao R, Ge Y (2010) An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 31:3868–3877. doi:10.1016/j.biomaterials.2010.01.111

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013a) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–139. doi:10.1016/j.biomaterials.2012.09.035

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A (2013b) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001. doi:10.1088/1758-5082/5/1/015001

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–5871. doi:10.1016/j.biomaterials.2005.02.027

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Martin JA, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135:91011. doi:10.1115/1.4024575

    Article  PubMed  Google Scholar 

  • Zhang Y, Yu Y, Chen H, Ozbolat IT (2013) Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 5:025004. doi:10.1088/1758-5082/5/2/025004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Vora A, Han W, Wojtecki RJ, Maune H, Le ABA, Thompson LE, McClelland GM, Ribet F, Engler AC, Nelson A (2015) Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 48:6482–6488. doi:10.1021/acs.macromol.5b01550

    Article  CAS  Google Scholar 

  • Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001. doi:10.1088/1758-5082/6/3/035001

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7:045002. doi:10.1088/1758-5090/7/4/045002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a seed grant from the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Medical Center and the A. James Clark School of Engineering at the University of Maryland. Additional funding was provided by the National Science Foundation/US Food and Drug Administration Scholar in Residence Program (CBET1445700). The content is solely the responsibility of the authors and does not necessarily represent the official views of these funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Arumugasaamy, N., Baker, H.B., Kaplan, D.S., Kim, P.C.W., Fisher, J.P. (2016). Fabrication and Printing of Multi-material Hydrogels. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-40498-1_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40498-1_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40498-1

  • Online ISBN: 978-3-319-40498-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics