Skip to main content

Clinical Results of Corneal Collagen Cross-linking

  • Chapter
  • First Online:
  • 814 Accesses

Abstract

We report on clinical results of corneal collagen cross-linking (CXL), analyzing intraoperative results, results in postrefractive surgery ectasia, results by iontophoresis, and results analyzed according to age of the patient.

Intraoperative Results. In eyes with progressive advanced keratoconus (KC) undergoing standard CXL, we evaluated uncorrected (UDVA) and corrected (CDVA) distance visual acuities, sphere and cylinder refraction, topography, tomography, aberrometry, and endothelial cell count at baseline and follow-up at 1, 3, 6, 12, and 24 months after treatment. Topography was also recorded intraoperatively, and corneal biomechanics during CXL was studied with the Ocular Response Analyzer (ORA).

Intraoperative topography obtained after epithelial removal showed a dramatic change in corneal power with an increase in the steepest meridian keratometry, simulated cylinder, and apical keratometry immediately after epithelial abrasion. Two years postoperatively, mean baseline UDVA and CDVA improved significantly and mean spherical equivalent manifest refraction (MRSE) decreased significantly. Mean baseline flattest and steepest meridians on simulated keratometry, simulated keratometry average, mean average pupillary power, and apical keratometry all decreased significantly. Mean 12-month baseline pupil center pachymetry and total corneal volume also decreased significantly. Endothelial cell counts did not change significantly.

Our intraoperative findings indicate that the epithelium acts as a smoothing agent that reduces corneal power, astigmatism, and irregularity of keratoconic corneas. Intraoperatively, we observed corneal thickness reduction apparently due to the dehydrating effect of T-dextran, which is part of the riboflavin solution.

Two years postoperatively, CXL appeared to be effective in improving UDVA and CDVA in eyes with progressive KC by significantly reducing corneal average pupillary power, keratometry, and total corneal wavefront aberrations. Our findings indicate that keratoconic corneas with very low pachymetry are more likely to improve, thus we suggest treating advanced KC. In case of corneal thickness below 400 μm, this can be attained safely by using swelling solutions.

Pertaining corneal biomechanics, corneal hysteresis (CH), and corneal resistance factor (CRF) showed similar behavior during and after CXL. Corneal epithelium removal did not affect CH and CRF. However, riboflavin impregnation and Ultraviolet-A (UVA) irradiation increased both parameters significantly. After the procedure, CH and CRF remained statistically significantly higher than the preoperative values only at 1-month follow-up. At 6 and 12 months postoperatively, no statistically significant changes were noted in CH and CRF. Our results indicate that corneal epithelium does not seem to affect the structural stability of the cornea, that the dehydrated cornea was more resistant and stiff, and that CXL did not induce any effect on intraocular pressure (IOP), as measured with the ORA.

Ectasia Results. One of the most dreadful long-term complications of excimer laser refractive surgery is ectasia. We present the results of 78 post-LASIK/PRK ectatic eyes that underwent CXL treatment and were followed for up to 5 years. The Dresden protocol was adopted. Corneas thinner than 400 μm could be treated after appropriate swelling. At 6 months and beyond, UDVA and CDVA improved, and mean sphere and astigmatism values were significantly reduced (P < 0.05). Klyce indices CVP, SDP, LogMAR, SRC showed significant decrease (P < 0.05) at 3 months. At 6 months postoperatively, the Ambrosio index IVA had significantly increased, and the KCI index had significantly decreased (P < 0.05). Corneal pachymetry decreased, endothelial cell count variations were unremarkable, and no ocular or systemic adverse events were observed. CXL appeared to stabilize as well as improve CDVA in these iatrogenic ectatic eyes.

Iontophoresis Results. Corneal epithelium may block UV penetration and riboflavin penetration, and this may be important for understanding the reduced effect of transepithelial (epithelium-on; Epi-On) CXL. Sparing the epithelium is important in order to reduce CXL-associated complications, discomfort, and length of procedure. A novel approach to enhance riboflavin penetration into the corneal stroma is based on iontophoresis, a noninvasive system aimed to enhance the delivery of charged molecules into tissues, using a small electric current.

We report the results of basic research studies on iontophoresis-assisted CXL as well as the initial clinical results that compare the efficacy of standard, epithelium-off (Epi-Off) CXL vs. Epi-On and iontophoresis techniques.

Results According to Age. We evaluated the 4-year outcomes of CXL for progressive KC in a population of different age groups. Four hundred consecutive eyes, treated with CXL for progressive KC from 04/2006 to 04/2010, were considered. The consolidated Epi-Off technique was used: epithelial removal, corneal irrigation for 30 min with a solution of 0.1 % riboflavin and 20 % dextran, followed by irradiation with UVA light of 3 mW/cm2 for 30 min.

Functional (CDVA and aberrometry, sphere, and cylinder refraction) and structural (corneal topography, Scheimpflug tomography) analysis was performed at baseline and at 1, 6, 12, 24, 36, 48 months after CXL treatment. Data were stratified according to age (Group A under 18; Group B 18–29 years; Group C 30–39 years and Group D over 40 years). Comparative analysis included 400 eyes of 301 patients. Functional results showed a significant increase in CDVA in Group A by a mean reduction of −0.11 LogMAR after 12 months, in Group B by a mean reduction of −0.31 after 36 months, in Group C by a mean reduction of −0.33 after 36 months, and in Group D by a mean reduction of −0.26 after 36 months. Morphological results showed an analogous regularization of corneal shape with a significant reduction of Opposite Sector Index (OSI) by a mean value of −0.53 at 12 months in Group A, of −1.14 at 36 months in Group B, of −1.10 at 36 months in Group C, and of −0.55 at 12 months for Group D. Optical quality improvement was demonstrated by a mean significant reduction of coma of −1.52 μm after 12 months in Group A, of −1.58 μm after 24 months in Group B, of −2.57 μm after 36 months for Group C, and of −0.25 μm after 36 months in Group D.

Outcomes stratified by age indicate that CXL is efficacious in stabilizing the progression of ectatic disease in all age groups and in improving the functional and morphological parameters in selected groups. Results indicated better functional and morphological results in the population between 18 and 39 years of age.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ziaei M, Barsam A, Shamie N, et al. Reshaping procedures for the surgical management of corneal ectasia. J Cataract Refract Surg. 2015;41(4):842–72.

    Article  PubMed  Google Scholar 

  2. Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal cross-linking. J Cataract Refract Surg. 2009;35:1358–62.

    Article  PubMed  Google Scholar 

  3. Koller T, Pajic B, Vinciguerra P, Seiler T. Flattening of the cornea after collagen cross-linking for keratoconus. J Cataract Refract Surg. 2011;37:1488–92.

    Article  PubMed  Google Scholar 

  4. Greenstein S, Hersh PS. A multifactorial treatment analysis and algorithm for corneal collagen cross-linking. http://www.arvo.org.Association for Research in Vision and Ophthalmology Web site. Accessed 2013.

  5. Greenstein SA, Fry KL, Hersh PS. Effect of topographic cone location on outcomes of corneal collagen cross-linking for keratoconus and corneal ectasia. J Refract Surg. 2012;28:397–405.

    Article  PubMed  Google Scholar 

  6. Toprak I, Yaylalı V, Yildirim C. Factors affecting outcomes of corneal collagen crosslinking treatment. Eye. 2014;28:41–6.

    Article  CAS  PubMed  Google Scholar 

  7. Vinciguerra P, Romano V, Romano MR, Azzolini C, Vinciguerra R. Comment on, ‘Factors affecting outcomes of corneal collagen crosslinking treatment’. Eye. 2014;28(8):1032–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high frequency digital ultrasound. J Refract Surg. 2008;24(6):571–81.

    PubMed  PubMed Central  Google Scholar 

  9. Vinciguerra P, Epstein D, Albè E, et al. Corneal topography-guided penetrating keratoplasty and suture adjustment: new approach for astigmatism control. Cornea. 2007;26(6):675–82.

    Article  PubMed  Google Scholar 

  10. Vinciguerra P, Munoz MI, Camesasca FI, Grizzi F, Roberts C. Long-term follow-up of ultrathin corneas after surface retreatment with phototherapeutic keratectomy. J Cataract Refract Surg. 2005;31(1):82–7.

    Article  PubMed  Google Scholar 

  11. Vinciguerra P, Camesasca FI. Custom phototherapeutic keratectomy with intraoperative topography. J Refract Surg. 2004;20(5):S555–63.

    PubMed  Google Scholar 

  12. Vinciguerra P, Camesasca FI. One-year follow-up of custom phototherapeutic keratectomy. J Refract Surg. 2004;20(5):S705–10.

    PubMed  Google Scholar 

  13. Vinciguerra P, Albè E, Trazza S, Seiler T, Epstein D. Intraoperative and postoperative effects of corneal collagen cross-linking on progressive keratoconus. Arch Ophthalmol. 2009;127(10):1258–65.

    Article  PubMed  Google Scholar 

  14. Wollensak G, Spoerl E, Seiler T. Stress–strain measurements of human and porcine corneas after riboflavin–ultraviolet-A–induced cross-linking. J Cataract Refract Surg. 2003;29(9):1780–5.

    Article  PubMed  Google Scholar 

  15. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin crosslinking of the cornea. Cornea. 2007;26(4):385–9.

    Article  PubMed  Google Scholar 

  16. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103.

    Article  CAS  PubMed  Google Scholar 

  17. Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg. 1999;15(6):711–3.

    CAS  PubMed  Google Scholar 

  18. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  19. Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom. 2008;91(1):34–55.

    Article  PubMed  Google Scholar 

  20. Hollingsworth JG, Bonshek RE, Efron N. Correlation of the appearance of the keratoconic cornea in vivo by confocal microscopy and in vitro by light microscopy. Cornea. 2005;24(4):397–405.

    Article  PubMed  Google Scholar 

  21. Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea. 1992;11(6):553–9.

    Article  CAS  PubMed  Google Scholar 

  22. Aktekin M, Sargon MF, Cakar P, Celik HH, Firat E. Ultrastructure of the cornea epithelium in keratoconus. Okajimas Folia Anat Jpn. 1998;75(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  23. Jongebloed WL, Worst JF. The keratoconus epithelium studied by SEM. Doc Ophthalmol. 1987;67(1–2):171–81.

    Article  CAS  PubMed  Google Scholar 

  24. Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg. 2006;22(5):486–93.

    PubMed  Google Scholar 

  25. Reinstein DZ. Subsurface screening for keratoconus. Cataract Refract Surg Today. 2007;88–89.

    Google Scholar 

  26. Simon G, Ren Q, Kervick GN, Parel JM. Optics of the corneal epithelium. Refract Corneal Surg. 1993;9(1):42–50.

    CAS  PubMed  Google Scholar 

  27. Patel S, Reinstein DZ, Silverman RH, Coleman DJ. The shape of Bowman’s layer in the human cornea. J Refract Surg. 1998;14(6):636–40.

    CAS  PubMed  Google Scholar 

  28. Gatinel D, Racine L, Hoang-Xuan T. Contribution of the corneal epithelium to anterior corneal topography in patients having myopic photorefractive keratectomy. J Cataract Refract Surg. 2007;33(11):1860–5.

    Article  PubMed  Google Scholar 

  29. Emre S, Doganay S, Yologlu S. Evaluation of anterior segment parameters in keratoconic eyes measured with the Pentacam system. J Cataract Refract Surg. 2007;33(10):1708–12.

    Article  PubMed  Google Scholar 

  30. Mencucci R, Mazzotta C, Rossi F, et al. Riboflavin and ultraviolet A collagen crosslinking: in vivo thermographic analysis of the corneal surface. J Cataract Refract Surg. 2007;33(6):1005–8.

    Article  PubMed  Google Scholar 

  31. Vinciguerra P, Albe E, Romano MR, Sabato L, Trazza S. Stromal opacity after cross-linking. J Refract Surg. 2012;28(3):165.

    Article  PubMed  Google Scholar 

  32. Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, et al. Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology. 2013;120(5):908–16.

    Article  PubMed  Google Scholar 

  33. Vetter JM, Brueckner S, Tubic-Grozdanis M, Vossmerbaumer U, Pfeiffer N, Kurz S. Modulation of central corneal thickness by various riboflavin eyedrop compositions in porcine corneas. J Cataract Refract Surg. 2012;38(3):525–32.

    Article  PubMed  Google Scholar 

  34. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026–31.

    Article  PubMed  Google Scholar 

  35. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371–5.

    Article  PubMed  Google Scholar 

  36. Rouse EJ, Roberts CJ, Mahmoud AM. The measurement of biomechanical parameters as a function of peak applied pressure in the Reichert Ocular Response Analyzer. Invest Ophthalmol Vis Sci. 2007;48:ARVO E-Abstract 1247/B202.

    Google Scholar 

  37. Luce DA. Methodology for cornea compensated IOP and corneal resistance factor for the Reichert Ocular Response Analyzer. Invest Ophthalmol Vis Sci. 2006;47:ARVO E-Abstract 2266/B1009.

    Google Scholar 

  38. Kérautret J, Colin J, Touboul D, Roberts C. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg. 2008;34(3):510–3.

    Article  PubMed  Google Scholar 

  39. Vinciguerra P, Albè E, Mahmoud A, Trazza S, Hafezi F, Roberts CJ. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J Refract Surg. 2010;26(9):669–76.

    Article  PubMed  Google Scholar 

  40. Muller LJ, Pels E, Vrensen GF. The specific architecture of the anterior stroma accounts for the maintenance of corneal curvature. Br J Ophthalmol. 2001;85(4):437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49(9):3919–26.

    Article  PubMed  Google Scholar 

  42. Rabinowitz YS. Ectasia after laser in situ keratomileusis. Curr Opin Ophthalmol. 2006;17:421–6.

    Article  PubMed  Google Scholar 

  43. Binder PS. Analysis of ectasia after laser in situ keratomileusis: risk factors. J Cataract Refract Surg. 2007;33:1530–8.

    Article  PubMed  Google Scholar 

  44. Randleman JB. Post-laser in-situ keratomileusis ectasia: current understanding ad future directions. Curr Opin Ophthalmol. 2006;17:406–12.

    Article  PubMed  Google Scholar 

  45. Maguire LJ, Lowry JC. Identifying progression of subclinical keratoconus by serial topography analysis. Am J Ophthalmol. 1991;112:41–5.

    Article  CAS  PubMed  Google Scholar 

  46. Vinciguerra P, Camesasca FI, Albè E, Trazza S. Corneal collagen cross-linking for ectasia after excimer laser refractive surgery: 1-year results. J Refract Surg. 2010;26(7):486–97.

    Article  PubMed  Google Scholar 

  47. Ambrósio Jr R, Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg. 2006;32:1851–9.

    Article  PubMed  Google Scholar 

  48. De Sanctis U, Loiacono C, Richiardi L, Turco D, Mutani B, Grignolo FM. Sensitivity and specificity of posterior corneal elevation measured by pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115:1534–9.

    Article  PubMed  Google Scholar 

  49. De Sanctis U, Missolungi A, Mutani B, et al. Reproducibility and repeatability of central corneal thickness measurement in keratoconus using the rotating Scheimpflug camera and ultrasound pachymetry. Am J Ophthalmol. 2007;144:712–8.

    Article  PubMed  Google Scholar 

  50. Ho JD, Tsai CY, Tsai RJ, Kuo LL, Tsai IL, Liou SW. Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera. J Cataract Refract Surg. 2008;34:137–45.

    Article  PubMed  Google Scholar 

  51. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K. Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg. 2008;34:103–13.

    Article  PubMed  Google Scholar 

  52. Al-Mezaine HS, Al-Amro SA, Kangave D, Sadaawy A, Wehaib TA, Al-Obeidan S. Comparison between central corneal thickness measurements by oculus pentacam and ultrasonic pachymetry. Int Ophthalmol. 2008;28:333–8.

    Article  PubMed  Google Scholar 

  53. Prinz A, Varga J, Findl O. Reliability of a video-based noncontact specular microscope for assessing the corneal endothelium. Cornea. 2007;26:924–9.

    Article  PubMed  Google Scholar 

  54. Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D. Refractive, topographic, tomographic and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369–78.

    Article  PubMed  Google Scholar 

  55. Hafezi F, Koller T, Vinciguerra P, Seiler T. Marked remodelling of the anterior corneal surface following collagen cross-linking with riboflavin and UVA. Br J Ophthalmol. 2011;95(8):1171–2.

    Article  PubMed  Google Scholar 

  56. Smolek MK, Klyce SD. Zernike polynomials are inadequate to represent higher order aberrations in the eye. Invest Ophthalmol Vis Sci. 2003;44:4676–81.

    Article  PubMed  Google Scholar 

  57. Kolhaas M, Spoerl E, Speck A, Schilde T, Sandner D, Pillunat L. A new treatment of keratectasia after LASIK by using collagen with riboflavin/UVA light cross- linking. Klin Monatsbl Augenheilkd. 2005;222:430–6.

    Article  Google Scholar 

  58. Kanellopoulos AJ. Post-LASIK ectasia. Ophthalmology. 2007;114:1230–1.

    Article  PubMed  Google Scholar 

  59. Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2007;33:2035–40.

    Article  PubMed  Google Scholar 

  60. Kymionis GD, Diakonis VF, Kalyvianaki M, Portaliou D, Siganos C, Kozobolis VP, Pallikaris AI. One-year follow-up of corneal confocal microscopy after corneal cross-linking in patients with post laser in situ keratosmileusis ectasia and keratoconus. Am J Ophthalmol. 2009;147(5):774–8, 778.

    Article  PubMed  Google Scholar 

  61. Mackool RJ. Crosslinking for iatrogenic keratectasia after LASIK and for keratoconus. J Cataract Refract Surg. 2008;34:879.

    Article  PubMed  Google Scholar 

  62. Hafezi F, Iseli HP. Pregnancy-related exacerbation of iatrogenic keratectasia despite corneal collagen crosslinking. J Cataract Refract Surg. 2008;34:1219–21.

    Article  PubMed  Google Scholar 

  63. Spoerl E, Raiskup-Wolf F, Pillunat LE. Biophysical principles of collagen cross-linking. Klin Monatsbl Augenheilkd. 2008;225:131–7.

    Article  Google Scholar 

  64. Ghanem VC, Ghanem RC, de Oliveira R. Postoperative pain after corneal collagen cross-linking. Cornea. 2013;32(1):20–4.

    Article  PubMed  Google Scholar 

  65. Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. J Ophthalmol. 2011;2011:5 p. 869015.

    Google Scholar 

  66. Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–63.

    Article  PubMed  Google Scholar 

  67. Filippello M, Stagni E, O’Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012;38(2):283–91.

    Article  PubMed  Google Scholar 

  68. Magli A, Forte R, Tortori A, Capasso L, Marsico G, Piozzi E. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013;32(5):597–601.

    Article  PubMed  Google Scholar 

  69. Salman AG. Transepithelial corneal collagen crosslinking for progressive keratoconus in a pediatric age group. J Cataract Refract Surg. 2013;39(8):1164–70.

    Article  PubMed  Google Scholar 

  70. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35(5):893–9.

    Article  PubMed  Google Scholar 

  71. Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35(3):540–6.

    Article  PubMed  Google Scholar 

  72. Kolozsvári L, Nógrádi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci. 2002;43(7):2165–8.

    PubMed  Google Scholar 

  73. Bottós KM, Schor P, Dreyfuss JL, Nader HB, Chamon W. Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras Oftalmol. 2011;74(5):348–51.

    Article  PubMed  Google Scholar 

  74. Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm. 2012;80(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  75. Herr NR, Wightman RM. Improved techniques for examining rapid dopamine signaling with iontophoresis. Front Biosci. 2013;5:249–57.

    Article  Google Scholar 

  76. Prasad R, Koul V. Transdermal delivery of methotrexate: past, present and future prospects. Ther Deliv. 2012;3(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  77. Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal disease. Prog Retin Eye Res. 2004;23(3):253–81.

    Article  CAS  PubMed  Google Scholar 

  78. Vinciguerra P, Randleman JB, Romano V, Legrottaglie EF, Rosetta P, Camesasca FI, Piscopo R, Azzolini C, Vinciguerra R. Transepithelial iontophoresis corneal collagen cross-linking for progressive keratoconus: initial clinical outcomes. J Refract Surg. 2014;30(11):746–53. doi:10.3928/1081597X-20141021-06.

    Article  PubMed  Google Scholar 

  79. Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy SD, Soler V, Fournié P, Malecaze F. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci. 2016;57(2):594–603.

    Article  CAS  PubMed  Google Scholar 

  80. Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, Mastropasqua R, Lanzini M. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157(3):623–30.

    Article  CAS  PubMed  Google Scholar 

  81. Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, Mastropasqua A, Nubile M. Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Vis Sci. 2014;55(4):2526–33.

    Article  PubMed  Google Scholar 

  82. Mencucci R, Ambrosini S, Paladini I, Favuzza E, Boccalini C, Raugei G, Vannelli GB, Marini M. Early effects of corneal collagen cross-linking by iontophoresis in ex vivo human corneas. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  83. Vinciguerra P, Mencucci R, Romano V, Spoerl E, Camesasca FI, Favuzza E, Azzolini C, Mastropasqua R, Vinciguerra R. Imaging mass spectrometry by matrix-assisted laser desorption/ionization and stress–strain measurements in iontophoresis transepithelial corneal collagen cross-linking.Biomed Res Int. 2014;2014:404587. doi:10.1155/2014/404587.

  84. Lombardo M, Serrao S, Rosati M, Ducoli P, Lombardo G. Biomechanical changes in the human cornea after transepithelial corneal crosslinking using iontophoresis. J Cataract Refract Surg. 2014;40(10):1706–15.

    Article  PubMed  Google Scholar 

  85. Mastropasqua L, Nubile M, Lanzini M, Calienno R, Mastropasqua R, Agnifili L, Toto L. Morphological modification of the cornea after standard and transepithelial corneal cross-linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea. 2013;32(6):855–61.

    Article  PubMed  Google Scholar 

  86. Bouheraoua N, Jouve L, ElSanharawi M, Sandali O, Temstet C, Loriaut P, Basli E, Borderie V, Laroche L. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Invest Ophthalmol Vis Sci. 2014;55(11):7601–9. doi:10.1167/iovs.14-15662.

    Article  PubMed  Google Scholar 

  87. Lanzini M, Calienno R, Salgari N, Nubile M, Mastropasqua L. Corneal collagen crosslinking with Iontophoresis imbibition: clinical and morphological reults. Chicago: American Academy of Ophthalmology; 2014.

    Google Scholar 

  88. Hall KG. A comprehensive study of keratoconus. Br J Physiol Opt. 1963;20:215–56.

    CAS  PubMed  Google Scholar 

  89. Rabinowitz YS, Rasheed K, Yang H, Elashoff J. Accuracy of ultrasonic pachymetry and videokeratography in detecting keratoconus. J Cataract Refract Surg. 1998;24:196–201.

    Article  CAS  PubMed  Google Scholar 

  90. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319.

    Article  CAS  PubMed  Google Scholar 

  91. Reeves SW, Stinnett S, Adelman RA, Afshari NA. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol. 2005;140:607–11.

    Article  PubMed  Google Scholar 

  92. Tuft SJ, Moodaley LC, Gregory WM, et al. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994;101:439–47.

    Article  CAS  PubMed  Google Scholar 

  93. Vanathi M, Panda A, Vengayil S, et al. Pediatric keratoplasty. Surv Ophthalmol. 2009;54:245–71.

    Article  CAS  PubMed  Google Scholar 

  94. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T. Long-term results of riboflavin ultraviolet A corneal collagen cross-linking for keratoconus in Italy: the Siena Eye Cross Study. Am J Ophthalmol. 2010;149:585–93.

    Article  CAS  PubMed  Google Scholar 

  95. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34:796–801.

    Article  PubMed  Google Scholar 

  96. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.

    Article  CAS  PubMed  Google Scholar 

  97. Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004;23:503–7.

    Article  PubMed  Google Scholar 

  98. Mencucci R, Marini M, Gheri G, et al. Lectin binding in normal, keratoconus and cross-linked human corneas. Acta Histochem. 2011;113:308–16.

    Article  CAS  PubMed  Google Scholar 

  99. Nishida T. Cornea. In: Krachmer JH Mannis MJ, Holland EJ, editors. Cornea, Basic science, vol. 1. St Louis: Mosby; 1997. p. 3–28.

    Google Scholar 

  100. Smelser GK, Polack FM, Ozanics V. Persistence of donor collagen in corneal transplants. Exp Eye Res. 1965;4:349–54.

    Article  CAS  PubMed  Google Scholar 

  101. Mencucci R, Marini M, Paladini I, et al. Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Experiment Ophthalmol. 2010;38:49–56.

    Article  PubMed  Google Scholar 

  102. Caporossi A, Mazzotta C, Baiocchi S, et al. Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol [serial online]. 2011;2011:608041. Available at: http://www.hindawi.com/journals/jop/2011/608041/. Accessed 24 Sept 2012.

  103. Cannon DJ, Davison PF. Aging, and crosslinking in mammalian collagen. Exp Aging Res. 1977;3:87–105.

    Article  CAS  PubMed  Google Scholar 

  104. Lowe MT, Keane MC, Coster DJ, Williams KA. The outcome of corneal transplantation in infants, children, and adolescents. Ophthalmology. 2011;118:492–7.

    Article  PubMed  Google Scholar 

  105. Limaiem R, Chebil A, Baba A, et al. Pediatric penetrating keratoplasty: indications and outcomes. Transplant Proc. 2011;43:649–51.

    Article  CAS  PubMed  Google Scholar 

  106. Ertan A, Ozkilic E. Effect of age on outcomes in patients with keratoconus treated by Intacs using a femtosecond laser. J Refract Surg. 2008;24:690–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vinciguerra MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vinciguerra, P. et al. (2017). Clinical Results of Corneal Collagen Cross-linking. In: Sinjab, M., Cummings, A. (eds) Corneal Collagen Cross Linking. Springer, Cham. https://doi.org/10.1007/978-3-319-39775-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39775-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39773-3

  • Online ISBN: 978-3-319-39775-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics