Skip to main content

The Role of Exercise and Physical Activity in the Prevention of Hypertensive Heart Disease

  • Chapter
  • First Online:
Hypertension and Cardiovascular Disease

Abstract

Hypertensive heart disease includes chronic maladaptations of cardiac structure and function caused by the direct and/or indirect effects of uncontrolled and prolonged elevations of arterial pressure. Reductions in blood pressure with most antihypertensive agents or lifestyle interventions lead to improvements in cardiac function, reversal of the structural maladaptations and improvement in cardiovascular prognosis. This chapter addresses the impact of increased physical activity or structured aerobic exercises on blood pressure control and hypertensive heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  2. Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, Fauad-Tarazi F, Horan MJ, Marcus M, Massie B, Pfeffer MA, Re RN, Roccella EJ, Savage D, Shub C. The heart in hypertension. N Engl J Med. 1992;327:998–1008.

    Article  CAS  PubMed  Google Scholar 

  3. Post WS, Larson MG, Levy D. Impact of left ventricular structure on the incidence of hypertension: the Framingham Heart Study. Circulation. 1994;90:179–85.

    Article  CAS  PubMed  Google Scholar 

  4. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  PubMed  Google Scholar 

  5. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43:731–8.

    Article  CAS  PubMed  Google Scholar 

  6. Muiesan ML, Salvetti M, Rizzoni D, Castellano M, Donato F, Agabiti-Rosei E. Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J Hypertens. 1995;13:1091–5.

    Article  CAS  PubMed  Google Scholar 

  7. Verdecchia P, Angeli F, Borgioni C, Gattobigio R, de Simone G, Devereux RB, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16:895–9.

    Article  PubMed  Google Scholar 

  8. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, Mureddu G, Pede S, Maggioni AP, Lucci D, Reboldi G. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet. 2009;374:525–33.

    Article  PubMed  Google Scholar 

  9. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  10. Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334–41.

    Article  CAS  PubMed  Google Scholar 

  11. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, Capra A, Giannattasio C, Dell’Oro R, Grassi G, Sega R, Mancia G. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64. doi:10.1097/HJH.0b013e328330b845.

    Article  CAS  PubMed  Google Scholar 

  12. Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practice clinical applications. Int J Hypertens. 2011;2011:1–10.

    Article  Google Scholar 

  13. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  CAS  PubMed  Google Scholar 

  14. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  15. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1. Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. The world health report 2002: reducing risks, promoting healthy life. World Health Organ. Geneva, Switzerland; 2002:57–8.

    Google Scholar 

  17. Kokkinos P. Cardiorespiratory fitness, exercise, and blood pressure. Hypertension. 2014;64:1160–4.

    Article  CAS  PubMed  Google Scholar 

  18. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  19. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American college of sports medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  20. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  21. Huai P, Xun H, Reilly KH, Wang Y, Ma W, Xi B. Physical activity and risk of hypertension: a meta-analysis of prospective cohort studies. Hypertension. 2013;62:1021–6.

    Article  CAS  PubMed  Google Scholar 

  22. Motoyama M, Sunami Y, Kinoshita F, et al. Blood pressure lowering effect of low intensity aerobic training in elderly hypertensive patients. Med Sci Sports Exerc. 1998;30(6):818–23.

    CAS  PubMed  Google Scholar 

  23. Ishikawa K, Ohta T, Zhang J, Hashimoto S, Tanaka H. Influence of age and gender on exercise training induced blood pressure reduction in systemic hypertension. Am J Cardiol. 1999;84(2):192–6.

    Article  CAS  PubMed  Google Scholar 

  24. Cornelissen VA, Smart NA. Exercise training on blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kokkinos P. The impact of exercise and physical fitness on blood pressure, left ventricular hypertrophy, and mortality among individuals with prehypertension and hypertension. In: Pascatello LS, editors. Effects of exercise on hypertension: from cell to physiological systems. Cham: Humana Press; New York, 2015.

    Google Scholar 

  26. Pascatella LS. The effects of Aerobic exercise on hypertension: current consensus and emerging research. In: Pascatello LS, editor. Effects of exercise on hypertension: from cell to physiological systems. Cham: Humana Press; New York, 2015.

    Google Scholar 

  27. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.

    Article  CAS  PubMed  Google Scholar 

  28. Kokkinos PF, Narayan P, Colleran J, Pittaras A, Notargiacomo A, Reda D, Papademetriou V. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333:1462–7.

    Article  CAS  PubMed  Google Scholar 

  29. Dimeo F, Pagonas N, Seibert F, Arndt R, Zidek W, Westhoff TM. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012;60:653–8.

    Article  CAS  PubMed  Google Scholar 

  30. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, Fuchs FD, Hughes JW, Lackland DT, Staffileno BA, Townsend RR, Rajagopalan S. Beyond medications and diet: alternative approaches to lowering blood pressure. A scientific statement from the American Heart Association on behalf of the American Heart Association Professional Education Committee of the council for high blood pressure research, council on cardiovascular and stroke nursing, council on epidemiology and prevention, and council on nutrition, physical activity and metabolism. Hypertension. 2013;61:1360–83.

    Article  CAS  PubMed  Google Scholar 

  31. Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2000;35:838–43.

    Article  CAS  PubMed  Google Scholar 

  33. Hurley BF, Gillin AR. Can resistance training play a role in the prevention or treatment of hypertension?. In: Pascatello LS, editor. Effects of exercise on hypertension: from cell to physiological systems. Cham: Humana Press; New York, 2015.

    Google Scholar 

  34. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–105.

    Article  PubMed  Google Scholar 

  35. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, Gulanick M, Laing ST, Stewart KJ. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116:572–84.

    Article  PubMed  Google Scholar 

  36. Palatini P, et al. Relation between physical training and ambulatory blood pressure in stage I hypertensive subjects. Results of the HARVEST Trial. Hypertension and Ambulatory Recording Venetia Study. Circulation. 1994;90(6):2870–6.

    Article  CAS  PubMed  Google Scholar 

  37. Gordon NF, Scott CB, Levine BD. Comparison of single versus multiple lifestyle interventions: are the antihypertensive effects of exercise training and diet-induced weight loss additive? Am J Cardiol. 1997;79(6):763–7.

    Article  CAS  PubMed  Google Scholar 

  38. Seals DR, Reiling MJ. Effect of regular exercise on 24-hour arterial pressure in older hypertensive humans. Hypertension. 1991;18(5):583–92.

    Article  CAS  PubMed  Google Scholar 

  39. Cleroux J, et al. Aftereffects of exercise on regional and systemic hemodynamics in hypertension. Hypertension. 1992;19(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  40. Floras JS, et al. Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertension. 1989;14(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  41. Kokkinos PF, et al. Effects of aerobic training on exaggerated blood pressure response to exercise in African-Americans with severe systemic hypertension treated with indapamide +/− verapamil +/− enalapril. Am J Cardiol. 1997;79(10):1424–6.

    Article  CAS  PubMed  Google Scholar 

  42. Linder L, et al. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation. 1990;81(6):1762–7.

    Article  CAS  PubMed  Google Scholar 

  43. Panza JA, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  44. DeSouza CA, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.

    Article  CAS  PubMed  Google Scholar 

  45. Higashi Y, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100(11):1194–202.

    Article  CAS  PubMed  Google Scholar 

  46. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    Article  CAS  PubMed  Google Scholar 

  47. Diez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension. 2010;55:1–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hinderliter A, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162:1333–9.

    Article  PubMed  Google Scholar 

  49. Turner MJ, Spina RJ, Kohrt WM, Ehsani AA. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension. J Gerontol A Biol Sci Med Sci. 2000;55:M245–51.

    Article  CAS  PubMed  Google Scholar 

  50. Rinder MR, Spina RJ, Peterson LR, Koenig CJ, Florence CR, Ehsani AA. Comparison of effects of exercise and diuretic on left ventricular geometry, mass, and insulin resistance in older hypertensive adults. Am J Physiol Regul Integr Comp Physiol. 2004;287:R360–8.

    Article  CAS  PubMed  Google Scholar 

  51. Palatini P, Visentin P, Dorigatti F, Guarnieri C, Santonastaso M, Cozzio S, et al. Regular physical activity prevents development of left ventricular hypertrophy in hypertension. Eur Heart J. 2009;30:225–32.

    Article  PubMed  Google Scholar 

  52. Reid CM, Dart AM, Dewar EM, Jennings GL. Interactions between the effects of exercise and weight loss on risk factors, cardiovascular haemodynamics and left ventricular structure in overweight subjects. J Hypertens. 1994;12:291–301.

    CAS  PubMed  Google Scholar 

  53. Stewart KJ, Ouyang P, Bacher AC, Lima S, Shapiro EP. Exercise effects on cardiac size and left ventricular diastolic function: relationships to changes in fitness, fatness, blood pressure and insulin resistance. Heart. 2006;92:893–8.

    Article  CAS  PubMed  Google Scholar 

  54. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359(9311):995–1003.

    Article  PubMed  Google Scholar 

  55. Dahlöf B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366(9489):895–906.

    Article  PubMed  Google Scholar 

  56. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 7th ed. Philadelphia: Lippincott Williams and Wilkins; 2005.

    Google Scholar 

  57. Kokkinos P, Pittaras A, Narayan P, Faselis C, Singh S, Manolis A. Exercise capacity and blood pressure associations with left ventricular mass in prehypertensive individuals. Hypertension. 2007;49:55–61.

    Article  CAS  PubMed  Google Scholar 

  58. Kokkinos P, Pittaras A, Manolis A, Panagiotakos D, Narayan P, Manjoros D, et al. Exercise capacity and 24-h blood pressure in prehypertensive men and women. Am J Hypertens. 2006;19:251–8.

    Article  PubMed  Google Scholar 

  59. Lim PO, Donnan PT, MacDonald TM. Blood pressure determinants of left ventricular wall thickness and mass index in hypertension: comparing office, ambulatory and exercise blood pressures. J Hum Hypertens. 2001;15:627–33.

    Article  CAS  PubMed  Google Scholar 

  60. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324:295–301.

    Article  CAS  PubMed  Google Scholar 

  61. Barry J, Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114:1633–44.

    Article  Google Scholar 

  62. Martin III WH, Coyle EF, Bloomfield SA, Ehsani AA. Effects of physical deconditioning after intense endurance training on left ventricular dimensions and stroke volume. J Am Coll Cardiol. 1986;7:982–9.

    Article  PubMed  Google Scholar 

  63. American College of Sports Medicine, Chodzko-Zajko WJ, Proctor DN, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30.

    Article  Google Scholar 

  64. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122:1637–48.

    Article  PubMed  Google Scholar 

  65. Rodriguez CJ, Sacco RL, Sciacca RR, Boden-Albala B, Homma S, Di Tullio MR. Physical activity attenuates the effect of increased left ventricular mass on the risk of ischemic stroke: The Northern Manhattan Stroke Study. J Am Coll Cardiol. 2002;39(9):1482–8.

    Article  PubMed  Google Scholar 

  66. Siegel D, Cheitlin MD, Black DM, et al. Risk of ventricular arrhythmias in hypertensive men with left ventricular hypertrophy. Am J Cardiol. 1990;65:742.

    Article  CAS  PubMed  Google Scholar 

  67. Vester EG, Kuhls S, Ochiulet-Vester J, et al. Electrophysiological and therapeutic implications of cardiac arrhythmias in hypertension. Eur Heart J. 1992;13(Suppl D):70.

    Article  PubMed  Google Scholar 

  68. Rials SJ, Wu Y, Ford N, et al. Effect of left ventricular hypertrophy and its regression on ventricular electrophysiology and vulnerability to inducible arrhythmia in the feline heart. Circulation. 1995;91:426.

    Article  CAS  PubMed  Google Scholar 

  69. Ghali JK, Kadakia S, Cooper RS, Liao YL. Impact of left ventricular hypertrophy on ventricular arrhythmias in the absence of coronary artery disease. J Am Coll Cardiol. 1991;17:1277.

    Article  CAS  PubMed  Google Scholar 

  70. Schmieder RE, Messerli FH. Determinants of ventricular ectopy in hypertensive cardiac hypertrophy. Am Heart J. 1992;123:89.

    Article  CAS  PubMed  Google Scholar 

  71. Verdecchia P, Reboldi G, Gattobigio R, et al. Atrial fibrillation in hypertension: predictors and outcome. Hypertension. 2003;41:218.

    Article  CAS  PubMed  Google Scholar 

  72. Kistler PM, Sanders P, Dodic M, Spence SJ, Samuel CS, Zhao C, Charles JA, Edwards GA, Kalman JM. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J. 2006;27:3045–56.

    Article  PubMed  Google Scholar 

  73. Kirchhof P, Schotten U. Hypertension begets hypertrophy begets atrial fibrillation? Insights from yet another sheep model. Eur Heart J. 2006;27:2919–20.

    Article  PubMed  Google Scholar 

  74. Baldesberger S, Bauersfeld U, Candinas R, Seifert B, Zuber M, Ritter M, Jenni R, Oechslin E, Luthi P, Scharf C, Marti B, Attenhofer Jost CH. Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J. 2008;29:71–8.

    Article  PubMed  Google Scholar 

  75. Karjalainen J, Kujala UM, Kaprio J, Sarna S, Viitasalo M. Lone atrial fibrillation in vigorously exercising middle aged men: case–control study. BMJ. 1998;316:1784–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mont L, Tamborero D, Elosua R, Molina I, Coll-Vinent B, Sitges M, Vidal B, Scalise A, Tejeira A, Berruezo A, Brugada J, Investigators G. Physical activity, height, and left atrial size are independent risk factors for lone atrial fibrillation in middle-aged healthy individuals. Europace. 2008;10:15–20.

    Article  PubMed  Google Scholar 

  77. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace. 2009;11:1156–9.

    Article  PubMed  Google Scholar 

  78. Heidbüchel H, Anné W, Willems R, Adriaenssens B, Van de Werf F, Ector H. Endurance sports is a risk factor for atrial fibrillation after ablation for atrial flutter. Int J Cardiol. 2006;107:67–72.

    Article  PubMed  Google Scholar 

  79. Molina L, Mont L, Marrugat J, Berruezo A, Brugada J, Bruguera J, Rebato C, Elosua R. Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace. 2008;10:618–23.

    Article  PubMed  Google Scholar 

  80. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE, Albert CM. Relation of vigorous exercise to risk of atrial fibrillation. Am J Cardiol. 2009;103:1572–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kasper A, Finn R, Claes H, Martin N, Per T, Johan S. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study. BMJ. 2015;351:h4543. doi:10.1136/bmj.h4543.

    Google Scholar 

  82. Naiara C, Josep B, Marta S, Lluís M. A trial fibrillation and atrial flutter in athletes. Br J Sports Med. 2012;46:i37–43. doi:10.1136/bjsports-2012-091171.

    Article  Google Scholar 

  83. Pelliccia A, Maron BJ, Di Paolo FM, Biffi A, Quattrini FM, Pisicchio C, Roselli A, Caselli S, Culasso F. Prevalence and clinical significance of left atrial remodeling in competitive athletes. J Am Coll Cardiol. 2005;46:690–6.

    Article  PubMed  Google Scholar 

  84. Sorokin AV, Araujo CG, Zweibel S, Thompson PD. Atrial fibrillation in endurance-trained athletes. Br J Sports Med. 2011;45:185–8.

    Article  CAS  PubMed  Google Scholar 

  85. Basavarajaiah S, Makan J, Naghavi SH, Whyte G, Gati S, Sharma S. Physiological upper limits of left atrial diameter in highly trained adolescent athletes. J Am Coll Cardiol. 2006;47:2341–2.

    Article  PubMed  Google Scholar 

  86. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008;118:800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Faselis C, Kokkinos P, Tsimploulis A, et al. Exercise capacity and atrial fibrillation risk in veterans: a cohort study. Mayo Clin Proc. 2016;91(5):558–66.

    Article  PubMed  Google Scholar 

  88. Rosen DB, Edvardsen T, Shenghan Lai S, et al. Left ventricular concentric remodeling is associated with decreased global and regional systolic function the multi-ethnic study of atherosclerosis. Circulation. 2005;112:984–91.

    Article  PubMed  Google Scholar 

  89. Stephanie K, Brinker S, Pandey A, Ayers CR, et al. Association of cardiorespiratory fitness with left ventricular remodeling and diastolic function: the cooper center longitudinal study. J Am Coll Cardiol HF. 2014;2:238–46.

    Google Scholar 

  90. Rahman I, Bellavia A, Wolk A, Orsini N. Physical activity and heart failure risk in a prospective study of men. J Am Coll Cardiol HF. 2015;3(9):681–7. doi:10.1016/j.jchf.2015.05.006.

    Google Scholar 

  91. Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116:2110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kokkinos Ph.D., FACSM, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kokkinos, P., Narayan, P., Pittaras, A., Faselis, C. (2016). The Role of Exercise and Physical Activity in the Prevention of Hypertensive Heart Disease. In: Andreadis, E. (eds) Hypertension and Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-39599-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39599-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39597-5

  • Online ISBN: 978-3-319-39599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics