Skip to main content

Toxic Elements

  • Chapter
  • First Online:

Abstract

Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to human exposure. The occurrence of each element in food classes from different regions is presented. Some of the current toxicological risk assessments on toxic elements, the human health effect of each toxic element, and their contents in the food legislations are presented. An overview of analytical techniques and challenges for determination of toxic elements in food is also given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311–319

    Article  CAS  Google Scholar 

  • Ackerman AH, Creed PA, Parks AN et al (2005) Comparison of a chemical enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ Sci Technol 39:5241–5246

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Springer, Berlin

    Book  Google Scholar 

  • Agilent (2005) Inductively coupled plasma mass spectrometry (ICP-MS), a premier. www.agilent.com/chem/icpms. Accessed 12 Feb 2015

  • Agusa T, Kunito T, Sudaryanto A et al (2007) Exposure assessment for trace elements from consumption of marine fish in Southeast Asia. Environ Pollut 145:766–777

    Article  CAS  Google Scholar 

  • Ahsan H, Chen Y, Kibriya MG et al (2007) Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:1270–1278

    Article  CAS  Google Scholar 

  • Åkesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68:6435–6441

    Article  CAS  Google Scholar 

  • Alexander PD, Alloway BJ, Dourado AM (2006) Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ Pollut 144:736–745

    Article  CAS  Google Scholar 

  • Alves LC, Wood CM (2006) The chronic effects of dietary lead in freshwater juvenile rainbow trout (Oncorhynchus mykiss) fed elevated calcium diets. Aquat Toxicol 78:217–232

    Article  CAS  Google Scholar 

  • Amin-Zaki L, Elhassani S, Majeed MA et al (1974) Intra-uterine methylmercury poisoning in Iraq. Pediatrics 54(5):587–595

    CAS  Google Scholar 

  • Amlund H, Berntssen MHG (2004) Arsenobetaine in Atlantic salmon (Salmo salar L.): influence of seawater adaptation. Comp Biochem Physiol 138C:507

    CAS  Google Scholar 

  • Amlund H, Francesconi KA, Bethune C et al (2006) Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Environ Toxicol Chem 25:1787–1794

    Article  CAS  Google Scholar 

  • Amlund H, Lundebye AK, Berntssen MHG (2007) Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquat Toxicol 83:323–330

    Article  CAS  Google Scholar 

  • Arisawa K, Uemura H, Hiyoshi M et al (2007) Cadmium-induced renal dysfunction and mortality in two cohorts: disappearance of the association in a generation born later. Toxicol Lett 169(3):214–221

    Article  CAS  Google Scholar 

  • Arora M, Weuve J, Schwartz J et al (2009) Association of environmental cadmium exposure with periodontal disease in U.S. adults. Environ Health Perspect 117:739–744

    Article  CAS  Google Scholar 

  • Aslam J, Khan SA, Khan SH (2013) Heavy metals contamination in roadside soil near different traffic signals in Dubai, United Arab Emirates. J Saudi Chem Soc 17(3):315–319

    Article  CAS  Google Scholar 

  • ATSDR (1999) Toxicological profile for lead. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Azizur RM, Hiroshi H (2011) High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ 409(22):4645–4655

    Article  CAS  Google Scholar 

  • Baatrup E, Danscher G (1987) Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium. Ecotoxicol Environ Saf 14:129–141

    Article  CAS  Google Scholar 

  • Bae M, Watanabe C, Inaoka T et al (2002) Arsenic in cooked rice in Bangladesh. Lancet 360:1839–1840

    Article  CAS  Google Scholar 

  • Barbier O, Jacquillet G, Tauc M (2005) Effect of heavy metals on, and handling by, the kidney. Nephron Physiol 99(4):105–110

    Article  CAS  Google Scholar 

  • Barhoumi S, Messaoudi I, Deli T et al (2009) Cadmium bioaccumulation in three benthic fish species, Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabes in Tunisia. J Environ Sci (China) 21(7):980–984

    Article  CAS  Google Scholar 

  • Barry PS (1981) Concentrations of lead in the tissues of children. Br J Ind Med 38:61–71

    CAS  Google Scholar 

  • Bartel M, Ebert F, Leffers L et al (2011) Toxicological characterization of the inorganic and organic arsenic metabolite thio-DMA in cultured human lung cells. J Toxicol. doi:10.1155/2011/373141

    Google Scholar 

  • Bellinger DC (2004) Lead. Pediatrics 113(4 Suppl):1016–1022

    Google Scholar 

  • Bendell LI, Feng C (2009) Spatial and temporal variation in cadmium concentrations and burdens in the Pacific oysters (Crassostrea gigas) sampled from the Pacific Northwest. Mar Pollut Bull 58:1137–1143

    Article  CAS  Google Scholar 

  • Bradl HB (2005) Sources and origins of heavy metals. In: Heavy metals in the environment. Elsevier, Germany, pp 1–27

    Google Scholar 

  • Brito JAA, McNeill FE, Webber CE et al (2005) Grid search: an innovative method for the estimation of the rates of lead exchange between body compartments. J Environ Monit 7:241–247

    Article  CAS  Google Scholar 

  • Brown RM, Newton D, Pickford CJ et al (1990) Human metabolism of arsenobetaine ingested with fish. Hum Exp Toxicol 9:41–46

    Article  CAS  Google Scholar 

  • Bullock P, Gregory PJ (1991) Soils in the urban environment. Blackwell, London

    Book  Google Scholar 

  • Bustamante P, Caurant F, Fowler SW et al (1998) Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sci Total Environ 220:71–80

    Article  CAS  Google Scholar 

  • Castro-González MI, Méndez-Armenta M (2008) Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol 26:263–271

    Article  CAS  Google Scholar 

  • Chaney RL, Reeves PG, Ryan JA et al (2004) An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals 17:549–553

    Article  CAS  Google Scholar 

  • Chary NS, Kamala CT, Raj DSS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524

    Article  CAS  Google Scholar 

  • Chen W, Andrew C, Laoosheng W et al (2007) Assessing long term environmental risks of trace elements in phosphate fertilizer. Ecotoxicol Environ Saf 67:48–58

    Article  CAS  Google Scholar 

  • Chen Y, Li T, Han X et al (2012) Cadmium accumulation in different pakchoi cultivars and screening for pollution-safe cultivars. J Zhejiang Univ Sci B (Biomed Biotechnol) 13(6):494–502

    Article  CAS  Google Scholar 

  • Chillrud SN, Bopp RF, Simpson HJ et al (1999) Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environ Sci Technol 33:657–662

    Article  CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK et al (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    CAS  Google Scholar 

  • Chowdhury MJ, Baldisserotto B, Wood CM (2005) Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Arch. Environ Contam Toxicol 48:381–390

    Article  CAS  Google Scholar 

  • Ciardullo S, Aureli F, Coni E et al (2008) Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth. J Agric Food Chem 56:2442–2451

    Article  CAS  Google Scholar 

  • Clarkson TW (1994) The toxicology of mercury and its compounds. In: Watras CJ, Huckabee JW (eds) Mercury pollution, integration and synthesis. Lewis, Boca Raton, pp 631–641

    Google Scholar 

  • Cornelis R, Crews H, Caruso J et al (2003) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester

    Book  Google Scholar 

  • Cragin DW, Meacher DM, Menzel DB (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37:839–846

    Article  Google Scholar 

  • Darby DA, Adam DD, Nivens WT (1986) Early sediment changes and element mobilization in a man-made estuary marsh. In: Sediment and water interactions. Springer, Berlin, pp 343–351

    Chapter  Google Scholar 

  • De Temmerman L, Ruttens A, Waegeneers N (2012) Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ Pollut 166:187–195

    Article  CAS  Google Scholar 

  • Devesa V, Luz Macho M, Jalon M et al (2001) Arsenic in cooked seafood products: study on the effect of cooking on total and inorganic arsenic contents. J Agric Food Chem 49:4132–4140

    Article  CAS  Google Scholar 

  • Ding C, Zhang T, Wang X, Zhou F et al (2013) Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety. J Environ Manag 122:8–14

    Article  CAS  Google Scholar 

  • Donohue J, Abernaty C (1994) Exposure to inorganic arsenic from fish and shellfish. In: Chappell LL, Abernathy C, Calderon R (eds) Arsenic: exposure and health effects. Elsevier, Oxford, pp 88–98

    Google Scholar 

  • DTU Food (2013) Chemical contaminants 2004-2011. http://www.food.dtu.dk/english/Publications/Food-safety/Chemical-contaminants. Accessed 25 Feb 2015

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Ebert F, Weiss A, Bultemeyer M et al (2011) Arsenicals affect base excision repair by several mechanisms. Mutat Res 715:32–41

    Article  CAS  Google Scholar 

  • EFSA (2009a) EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on Arsenic in Food. EFSA J 7(10):1351, www.efsa.europa.eu/efsajournal. Accessed 15 Feb 2015

    Article  Google Scholar 

  • EFSA (2009b) Scientific Opinion Cadmium in Food, Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J 980:1–139, www.efsa.europa.eu/efsajournal. Accessed 15 Feb 2015

    Google Scholar 

  • EFSA (2010) Scientific opinion on lead in food, scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J 8(4):1570, www.efsa.europa.eu/efsajournal. Accessed 15 Feb 2015

    Article  CAS  Google Scholar 

  • EFSA (2012) Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 10(12):2985, www.efsa.europa.eu/efsajournal. Accessed 15 Feb 2015

    Article  CAS  Google Scholar 

  • Endo T, Hisamichi Y, Haraguchi K et al (2008) Hg, Zn and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki Island, Japan: relationship between metal concentrations and body length. Mar Pollut Bull 56(10):1774–1780

    Article  CAS  Google Scholar 

  • EPA (2005) Issue paper: inorganic arsenic cancer slope factor. Final draft. 22 July 2005 report of the EPA Intra-Agency Arsenic Cancer Slope Factor Workgroup. US Environmental Protection Agency, July 22: 38

    Google Scholar 

  • Eum KD, Lee MS, Paek D (2008) Cadmium in blood and hypertension. Sci Total Environ 407(1):147–153

    Article  CAS  Google Scholar 

  • Foran SE, Flood JG, Lewandrowski KB (2003) Measurement of mercury levels in concentrated over-the-counter fish oil preparations is fish oil healthier than fish? Arch Pathol Lab Med 127:1603–1605

    CAS  Google Scholar 

  • Foster S, Maher W, Taylor A et al (2005) Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environ Chem 2:177–189

    Article  CAS  Google Scholar 

  • Francesconi KA (2007) Toxic metal species and food regulations-making a healthy choice. Analyst 132:17–20

    Article  CAS  Google Scholar 

  • Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82(2):373–381

    Article  CAS  Google Scholar 

  • Francesconi KA, Tanggaard R, McKenzie CJ et al (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48:92–101

    CAS  Google Scholar 

  • Futatsuka M, Kitano T, Shono M et al (2000) Health surveillance in the population living in a methylmercury polluted area over a long period. Environ Res 83(2):83–92

    Article  CAS  Google Scholar 

  • Garrett RR (2000) Natural sources of metals to the environment. Hum Ecol Risk Assess 6:945–963

    Article  CAS  Google Scholar 

  • Gaw SK, Kim ND, Northcott GL et al (2008) Uptake of SDDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. J Agric Food Chem 56:6584–6593

    Article  CAS  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C et al (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1(22):1–6

    Google Scholar 

  • Goessler W, Kuehnelt D (2003) Sample preparation for arsenic speciation. In: Mester Z, Sturgeon R (eds) Comprehensive analytical chemistry XLI. Elsevier, Amsterdam, pp 1027–1044

    Google Scholar 

  • Gómez-Ariza JL, Morales E, Giráldez I et al (2001) Sample treatment and storage in speciation analysis. In: Ebdon L, Pitts L, Cornelis R et al (eds) Trace element speciation for environmental, food and health. Royal Society of Chemistry, Cambridge, pp 51–80

    Chapter  Google Scholar 

  • Gómez-Ariza JL, Garćıa-Barrera T, Lorenzo F et al (2004) Use of mass spectrometry techniques for the characterization of metal bound to proteins (metallomics) in biological systems. Anal Chim Acta 524:15–22

    Article  CAS  Google Scholar 

  • Gorbunov AV, Frontasyeva MV, Kistanov AA et al (2003) Heavy and toxic metals in staple foodstuffs and agriproducts from contaminated soils. J Environ Sci Health B 38:181–192

    Article  CAS  Google Scholar 

  • Gulson BL, Mizon KJ, Korsch MJ et al (1996) Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. Bull Environ Contam Toxicol 56:543–550

    Article  CAS  Google Scholar 

  • Guzzi GP, La Porta CAM (2008) Molecular mechanisms triggered by mercury. Toxicology 244:1–12

    Article  CAS  Google Scholar 

  • Hajeb P, Jinap S, Ismail A et al (2009) Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Control 20:79–84

    Article  CAS  Google Scholar 

  • Heitkemper DT, Vela NP, Stewart KR et al (2001) Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 16:299–306

    Article  CAS  Google Scholar 

  • Heitkemper DT, Kubachka KM, Halpin PR et al (2009) Survey of total arsenic and arsenic speciation in US-produced rice as a reference point for evaluating change and future trends. Food Addit Contam 2(2):112–120

    Article  CAS  Google Scholar 

  • Herce-Pagliai C, González G, Camean AM et al (1999) Presence and distribution of arsenical species in beers. Food Addit Contam 16:267–271

    Article  CAS  Google Scholar 

  • Hogervorst J, Plusquin M, Vangronsveld J et al (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37

    Article  CAS  Google Scholar 

  • Horvat M (2005) Determination of mercury and its compounds in water, sediment, soil and biological samples. In: Pirrone N, Mahaffey KR (eds) Dynamics of mercury pollution on regional and global scales. Springer, New York, pp 153–190

    Chapter  Google Scholar 

  • Hu XF, Jiang Y, Shu Y et al (2014) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J Geochem Explor 147:139–150

    Article  CAS  Google Scholar 

  • Hueter RE, Fong WG, Henderson G (1995) Methylmercury concentration in shark muscle by species, size and distribution of sharks in Florida coastal waters. In: Porcella DB, Wheatley B (eds) Mercury as a global pollutant. Proceedings of the third international conference Whistler, British Columbia, 10–14 July 1994. Kluwer, Boston, MA, pp 893–899

    Google Scholar 

  • IARC (2012) Agents classified by the IARC monographs, volumes 1–112. Accessed 10 Feb 2015

    Google Scholar 

  • Ikeda M, Zhang ZW, Shimbo S et al (2000) Urban population exposure to lead and cadmium in east and south-east Asia. Sci Total Environ 249:373–384

    Article  CAS  Google Scholar 

  • Il’yasova D (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207(2):179–186

    Article  CAS  Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y et al (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 159(2):192–201

    Article  CAS  Google Scholar 

  • IPCS (International Programme on Chemical Safety) (1992) Cadmium—environmental health criteria 134. World Health Organization, Geneva, http://www.inchem.org/documents/ehc/ehc/ehc134.htm. Accessed 29 Dec 2009

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • JECFA (2004) Evaluation of certain food additives and contaminants. Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series 922. FAO/WHO, Geneva

    Google Scholar 

  • JECFA (2011a) Evaluation of certain food additives and contaminants. Seventy-second report of the joint FAO/WHO expert committee on food additives. WHO technical report series 959

    Google Scholar 

  • JECFA (2011b) Evaluation of certain food additives and contaminants. Seventy-third report of the joint FAO/WHO expert committee on food additives. WHO technical report series 960

    Google Scholar 

  • Jin T, Nordberg M, Frech W et al (2002) Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (China Cad). Biometals 15:397–410

    Article  CAS  Google Scholar 

  • Jorhem L, Åstrand C, Sundström B et al (2008) Elements in rice from the Swedish market: cadmium, lead and arsenic (total and inorganic). Food Addit Contam 25(3):284–292

    Article  CAS  Google Scholar 

  • Julshamn K, Lundebye AK, Berntssen MHG et al (2004) Årsrapport 2003. Overvåkningsprogram for fôrvarer til fisk og andre akvatiske dyr. National Institute of Nutrition and Seafood Research (NIFES), Norway

    Google Scholar 

  • Julshamn K, Nilsen B, Frantzen S et al (2012) Survey on total and inorganic arsenic in more than 900 fish samples from Norwegian waters. Food Addit Contam B 5:229–235

    Article  CAS  Google Scholar 

  • Jung MC, Thornton I (1997) Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci Total Environ 198:105–121

    Article  CAS  Google Scholar 

  • Jures D, Blanus M (2003) Mercury, arsenic, lead and cadmium in fish and shellfish from the Adriatic Sea. Food Addit Contam 20(3):241–246

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton

    Google Scholar 

  • Kalay M, Canli M (2000) Elimination of essential (Cu and Zn) and non essential (Cd and Pb) metals from tissues of a fresh water fish, Tilapia zillii. Trop J Zool 24:429–436

    CAS  Google Scholar 

  • Kaoud HA, El-Dahshan ER (2010) Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci 8(4):147–156

    Google Scholar 

  • Karadjova IB, Petrov PK, Serafimovski I, Stafilov T, Tsalev DL (2007) Arsenic in marine tissues-The challenging problems to electrothermal and hydride generation atomic absorption spectrometry. Spectrochim Acta Part B 62:258–268

    Article  CAS  Google Scholar 

  • Kobayashi E, Okubo Y, Suwazono Y et al (2002) Dose-response relationship between total cadmium intake calculated from the cadmium concentration in rice collected from each household of farmers and renal dysfunction in inhabitants of the Jinzu River basin, Japan. J Appl Toxicol 22(6):431–436

    Article  CAS  Google Scholar 

  • Kobayashi E, Suwazono Y, Uetani M et al (2006) Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan. J Appl Toxicol 26(4):351–355

    Article  CAS  Google Scholar 

  • Kołakowska A, Stypkto K, Domiszewski Z et al (2002) Canned cod liver as a source of n-3 polyunsaturated fatty acids, with a reference to contamination. Food 46:40–45

    Google Scholar 

  • Kondo K (2000) Congenital Minamata disease: warnings from Japan’s experience. J Child Neurol 15(7):458–464

    Article  CAS  Google Scholar 

  • Kruzynski G, Addison R, Macdonald R (2002) Proceedings of a workshop on possible pathways of cadmium into the Pacific oyster Crassostrea gigas as cultured on the coast of British Columbia, Institute of Ocean Sciences, March 6–7. Can Tech Rep Fish Aquat Sci 2405(p):41–42

    Google Scholar 

  • Krystek P, Ritsema R (2004) Determination of methylmercury and inorganic mercury in shark fillets. Appl Organomet Chem 18:640–645

    Article  CAS  Google Scholar 

  • Kwok CK, Liang Y, Wang H et al (2014) Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotoxicol Environ Safe 106:62–67

    Article  CAS  Google Scholar 

  • Lampe BJ, Park SK, Robins T et al (2008) Association between 24-hour urinary cadmium and pulmonary function among community-exposed men: the VA Normative Aging Study. Environ Health Perspect 116:1226–1230

    Article  Google Scholar 

  • Laparra JM, Vélez D, Barberá R (2005) Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J Agric Food Chem 53:8829–8833

    Article  CAS  Google Scholar 

  • Lekhi P, Cassis D, Pearce C et al (2008) Role of dissolved and particulate cadmium in the accumulation of cadmium in cultured oysters (Crassostrea gigas). Sci Total Environ 393:309–325

    Article  CAS  Google Scholar 

  • Li FL, Liu CQ, Yang YG et al (2012) Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: a Pb isotopic approach. Sci Total Environ 431:339–347

    Article  CAS  Google Scholar 

  • Lin HT, Wong SS, Li GC (2004) Heavy metal content of rice and shellfish in Taiwan. J Food Drug Anal 12:167–174

    CAS  Google Scholar 

  • Lindberg AL, Rahman M, Persson LA et al (2008) The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharmacol 230:9–16

    Article  CAS  Google Scholar 

  • Lunde G (1968) Analysis of arsenic in marine oils by neutron activation, Evidence of arseno organic compounds. J Am Oil Chem Soc 45:331–332

    Article  CAS  Google Scholar 

  • Luo L, Ma YB, Zhang SZ et al (2009) An inventory of trace element inputs to agricultural soils in China. J Environ Manag 90:2524–2530

    Article  CAS  Google Scholar 

  • Luo CL, Liu CP, Wang Y et al (2011) Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J Hazard Mater 186:481–490

    Article  CAS  Google Scholar 

  • Ma M, Le XC (1998) Effect of arsenosugar ingestion on urinary arsenic speciation. Clin Chem 44:539–550

    CAS  Google Scholar 

  • Maduabuchi JMU, Nzegwu CN, Adigba EO et al (2006) Lead and cadmium exposures from canned and non-canned beverages in Nigeria: a public health concern. Sci Total Environ 366:621–626

    Article  CAS  Google Scholar 

  • Måge A, Julshamn K, Hemre GI et al (2005) Årsrapport 2004. Overvakningsprogram for Fôrvarer til fisk og andre akvatiske dyr. National Institute of Nutrition and Seafood Research (NIFES), Norway

    Google Scholar 

  • Måge A, Julshamn K, Hemre GI et al (2006) Årsrapport 2005. Overvakningsprogram for fôrvarer til fisk og andre akvatiske dyr. National Institute of Nutrition and Seafood Research (NIFES), Norway

    Google Scholar 

  • Måge A, Julshamn K, Hemre GI et al (2007) Årsrapport 2006. Overvakningsprogram for fôrvarer til fisk og andre akvatiske dyr. National Institute of Nutrition and Seafood Research (NIFES), Norway

    Google Scholar 

  • Måge A, Julshamn K, Hemre GI et al (2008) Årsrapport 2007. Overvakningsprogram for fôrvarer til fisk og andre akvatiske dyr. National Institute of Nutrition and Seafood Research (NIFES), Norway

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic around the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Manton WI, Angle CR, Stanek KL et al (2000) Acquisition and retention of lead by young children. Environ Res 82:6–80

    Article  Google Scholar 

  • Markowitz M (2000) Lead poisoning. Pediatr Rev 221(10):327–335

    Article  Google Scholar 

  • Martí-Cid R, Bocio A, Llobet JM et al (2007) Intake of chemical contaminants through fish and seafood consumption by children of Catalonia, Spain: health risks. Food Chem Toxicol 45(10):1968–1974

    Article  CAS  Google Scholar 

  • Mass MJ, Tennant A, Roop BC et al (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361

    Article  CAS  Google Scholar 

  • McCarty KM, Chen YC, Quamruzzaman Q et al (2007) Arsenic methylation, GSTT1, GSTM1, GSTP1 polymorphisms, and skin lesions. Environ Health Perspect 115:341–345

    Article  CAS  Google Scholar 

  • McGrath SP, Chang AC, Page AL et al (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ Rev 2(1):108–118

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Lombi E, Williams PN et al (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42:1051–1057

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Menke A, Muntner P, Silbergeld EK et al (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117:190–196

    Article  CAS  Google Scholar 

  • Miller CA, Srivastava RK (2000) The combustion of Orimulsion and its generation of air pollutants. Prog Energy Combust Sci 26:131–160

    Article  CAS  Google Scholar 

  • Miramand P, Bentley D (1992) Concentration and distribution of heavy metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English Channel. Mar Biol 114:407–414

    Article  CAS  Google Scholar 

  • Miramand P, Guary JC (1980) High concentrations of some heavy metals in tissues of the Mediterranean octopus. Bull Environ Contam Toxicol 24:783–788

    Article  CAS  Google Scholar 

  • Mishra S, Tripathi RM, Bhalke S et al (2005) Determination of methylmercury and mercury(II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry. Anal Chim Acta 551:192–198

    Article  CAS  Google Scholar 

  • Morais S, Costa FG, Pereira ML (2012) Heavy metals and human health, environmental health-emerging issues and practice, Prof. Jacques Oosthuizen (ed), ISBN:978-953-307-854-0, InTech, available from http://www.intechopen.com/books/environmental-health-emerging-issuesandpractice/heavy-metals-and-human-health. Accessed 12 May 2015

  • Muñoz O, Devesa V, Suñer MA et al (2000) Total and inorganic arsenic in fresh and processed fish products. J Agric Food Chem 48(9):4369–4376

    Article  CAS  Google Scholar 

  • Mushak P (2011) Lead and public health, science, risk and regulation. Principal. PB, Durham, p 950

    Google Scholar 

  • Naranmandura H, Ibata K, Suzuki KT et al (2007) Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chem Res Toxicol 20:1120–1125

    Article  CAS  Google Scholar 

  • National Institute of Public Health (NIPH) (1998) Report for year 1997. Subsystem 4, Health consequences of the human exposure to foreign substances from food chains in 1997: reported alimentary diseases and total diet study. NIPH, Prague

    Google Scholar 

  • National Research Council (NRC) (1993) Measuring lead exposure in infants children and other sensitive populations. National Academy Press, Washington

    Google Scholar 

  • Navas-Acien A, Silbergeld EK, Sharrett R et al (2005) Metals in urine and peripheral arterial disease. Environ Health Perspect 113:164–169

    Article  CAS  Google Scholar 

  • Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P et al (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • Nishijo M, Morikawa Y, Nakagawa H et al (2006) Causes of death and renal tubular dysfunction in residents exposed to cadmium in the environment. Occup Environ Med 63(8):545–550

    Article  CAS  Google Scholar 

  • Obernberger I, Biedermannm F (1998) Fractionated heavy metal separation in Australian biomass grate-fired combustion plants approach, experiences, results. Ashes and particulate emissions from biomass combustion: thermal biomass utilization series, BIOS, vol 3. DBV, Austria

    Google Scholar 

  • O’Flaherty EJ (1995) Physiologically based models for bone-seeking elements. V: Lead absorption and disposition in childhood. Toxicol Appl Pharmacol 131:297–308

    Article  Google Scholar 

  • Palapa TM, Maramis AA (2015) Heavy metals in water of stream near an amalgamation tailing ponds in Talawaan–Tatelu Gold Mining, North Sulawesi, Indonesia. Procedia Chem 14:428–436

    Article  CAS  Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S et al (2005) Lead toxicity update. A brief review. Med Sci Monit 11(10):RA329–RA336

    CAS  Google Scholar 

  • Peralta-Videa JR, Lopeza ML, Narayana M et al (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  Google Scholar 

  • Pethybridge H, Cossa D, Butler ECV (2010) Mercury in 16 demersal sharks from southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69:18–26

    Article  CAS  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR et al (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  CAS  Google Scholar 

  • Petursdottir A (2014) Inorganic and lipophilic arsenic in food commodities with emphasis on seafood. PhD Thesis, University of Aberdeen, UK

    Google Scholar 

  • Philip AT, Gerson B (1994) Lead poisoning-part I. Incidence, etiology, and toxicokinetics. Clin Lab Med 14(2):423–444

    CAS  Google Scholar 

  • Phuong TD, Chuong PV, Khiem DT et al (1999) Elemental content of Vietnamese rice Part 1. Sampling, analysis and comparison with previous studies. Analyst 124:553–560

    Article  CAS  Google Scholar 

  • Rabinowitz MB (1991) Toxicokinetics of bone lead. Environ Health Perspect 91:33–37

    Article  CAS  Google Scholar 

  • Raml R, Goessler W, Traar P et al (2005) Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside. Chem Res Toxicol 18:1444–1450

    Article  CAS  Google Scholar 

  • Raml R, Raber G, Rumpler A et al (2009) Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood. Chem Res Toxicol 22:1534–1540

    Article  CAS  Google Scholar 

  • Rana SVS (2014) Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res 160:1–14

    Article  CAS  Google Scholar 

  • Rao RN, Talluri MVNK (2007) An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals. J Pharm Biomed Anal 43:1–13

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN et al (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  CAS  Google Scholar 

  • Rooney JPK (2014) The retention time of inorganic mercury in the brain-A systematic review of the evidence. Toxicol Appl Pharmacol 274(3):425–435

    Article  CAS  Google Scholar 

  • Roychowdhury T (2008) Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food Chem Toxicol 46:2856–2864

    Article  CAS  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H et al (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem Toxicol 40:1611–1621

    Article  CAS  Google Scholar 

  • Rust SW, Kumar P, Burgoon DA, Niemuth NA, Schultz BD (1999) Influence of bone-lead stores on the observed effectiveness of lead hazard intervention. Environ Res 81:175–184

    Article  CAS  Google Scholar 

  • Sahmoun AE, Case LD, Jackson SA et al (2005) Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Invest 23(3):256–263

    Article  CAS  Google Scholar 

  • Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103

    Article  CAS  Google Scholar 

  • Satarug S, Garrett SH, Sens MA et al (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118(2):182–190

    Article  CAS  Google Scholar 

  • Schmeisser E (2005) Development and application of analytical techniques for the investigation of novel water- and lipid-soluble arsenic species in biological samples. Karl-Franzens University Graz, Austria

    Google Scholar 

  • Schutte R, Nawrot TS, Richart T et al (2008) Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 116:777–783

    Article  CAS  Google Scholar 

  • Schwartz GG, Il’yasova D, Ivanova A (2003) Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26(2):468–470

    Article  CAS  Google Scholar 

  • Schwerdtle T, Walter I, Mackiw I et al (2003) Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24:967–974

    Article  CAS  Google Scholar 

  • Sele V, Sloth JJ, Lundebye AK et al (2012) Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chem 133:618–630

    Article  CAS  Google Scholar 

  • Shimbo S, Zhang ZW, Watanabe T et al (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281:165–175

    Article  CAS  Google Scholar 

  • Shiomi K (1994) Arsenic in marine organisms: chemical forms and toxicological aspects. In: Nriagu JO (ed) Arsenic in the environment, Part II: Human health and ecosystem effects. Wiley, New York, pp 261–282

    Google Scholar 

  • Shiomi K, Sugiyama Y, Shimakura K et al (1995) Arsenobetaine as the major arsenic compound in the muscle of two species of freshwater fish. Appl Organomet Chem 9:105–109

    Article  CAS  Google Scholar 

  • Signes AJ, Mitra K, Burlo F et al (2008) Effect of two dehusking procedures on total arsenic concentration in rice. Eur Food Res Technol 226:561–567

    Article  CAS  Google Scholar 

  • Sloth JJ, Julshamn K, Lundebye AK (2005) Total arsenic and inorganic arsenic content in Norwegian fish feed products. Aquacult Nutr 11:61–66

    Article  CAS  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    CAS  Google Scholar 

  • Smith NM, Lee R, Heitkemper DT et al (2006) Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ 370:294–301

    Article  CAS  Google Scholar 

  • Soeroes C, Goessler W, Francesconi KA et al (2005) Arsenic speciation in farmed Hungarian freshwater fish. J Agric Food Chem 53:9238–9243

    Article  CAS  Google Scholar 

  • Souza IC, Duarte ID, Pimentel DQ et al (2013) Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries. Environ Pollut 180:136–144

    Article  CAS  Google Scholar 

  • Stacey S, Merrington G, Mclaughlin MJ (2001) The effect of ageing biosolids on the availability of cadmium and zinc in soil. Eur J Soil Sci 52:313–321

    Article  CAS  Google Scholar 

  • Statista (2013) World’s leading 20 producers of rice in 2013 (in million metric tons). http://www.statista.com/statistics/255937/leading-rice-producers-worldwide/. Accessed 27 Mar 2015

  • Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–2788

    Article  CAS  Google Scholar 

  • Straif K, Benbrahim-Tallaa L, Baan R et al (2009) A review of human carcinogens—part C: Metals, arsenic, dusts, and fibres. Lancet Oncol 10:453–454

    Article  Google Scholar 

  • Styblo M, Del Razo LM, Vega L et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    Article  CAS  Google Scholar 

  • Sun GX, Williams PN, Carey AM et al (2008) Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol 42(19):7542–7546

    Article  CAS  Google Scholar 

  • Svartengren M, Elinder CG, Friberg L et al (1986) Distribution and concentration of cadmium in human kidney. Environ Res 39(1):1–7

    Article  CAS  Google Scholar 

  • Szyczewski P, Siepak J, Niedzielski P, Sobczyński T (2009) Research on heavy metals in Poland. Pol J Environ Stud 18:755–768

    CAS  Google Scholar 

  • Teeyakasem W, Nishijo M, Honda R et al (2007) Monitoring of cadmium toxicity in a Thai population with high-level environmental exposure. Toxicol Lett 169(3):185–195

    Article  CAS  Google Scholar 

  • Thomas DJ (2007) Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol 222:365–373

    Article  CAS  Google Scholar 

  • Torres-Escribano S, Leal M, Razvelez D (2008) Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environ Sci Technol 42:3867–3872

    Article  CAS  Google Scholar 

  • Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810

    Article  CAS  Google Scholar 

  • USDA (2008) Cooperative State Research Education and Extension Service Award No. 2004-51110-02156 characterization of the cadmium health risk, concentrations and ways to minimize cadmium residues in shellfish: sampling and analysis of cadmium in U.S. West Coast Bivalve Shellfish. Final Report 48, p 4

    Google Scholar 

  • Wicklund-Glynn A (1991) Cadmium and zinc kinetics in fish; Studies on water-borne Cd109 and Zn65 turnover and intracellular distribution in Minnows, Phoxinus phoxinus. Pharmacol Toxicol 69:485–491

    Article  Google Scholar 

  • Williams PN, Price AH, Raab A et al (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  Google Scholar 

  • Williams PN, Islam MR, Adomako EE et al (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    Article  CAS  Google Scholar 

  • Wills NK, Kalariya N, Sadagopa Ramanujam VM et al (2009) Human retinal cadmium accumulation as a factor in the etiology of age-related macular degeneration. Exp Eye Res 89(1):79–87

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2010) Ten chemicals of major public health concern, http://www.who.int/ipcs/assessment/public_health/chemicals_phc/. Accessed 11 Feb 2015

  • Yang QW, Lan CY, Wang HB et al (2006) Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric Water Manag 84:147–152

    Article  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    Article  CAS  Google Scholar 

  • Zhang X, Zhang C (2003) Atomic absorption and atomic emission spectrometry. In: Cornelis R, Caruso J, Crews H, Heumann K (eds) Handbook of elemental speciation: techniques and methodology. Wiley, West Sussex, England, pp 241–257

    Chapter  Google Scholar 

  • Zheng J, Chen K, Yan X et al (2013) Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicol Environ Saf 96:205–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Hajeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hajeb, P., Shakibazadeh, S., Sloth, J.J. (2016). Toxic Elements. In: Selamat, J., Iqbal, S. (eds) Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-39253-0_4

Download citation

Publish with us

Policies and ethics