Skip to main content

Implementation of the Macro and Micro Mechanical Cochlea Model in a GPU

  • Conference paper
  • First Online:
  • 890 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 595))

Abstract

For a long time, cochlea models have been an interesting area of study for scientists in different fields such as medicine, especially in otorhinolaryngology, physics and acoustic engineering, among others. That is because, in mammals, this organ is the most important element in the transduction of the sound pressure that is received by the outer and middle ear.

In this paper we present a method to simulate the macro and micro mechanical model developed by Neely [3], using a Graphics Processing Unit (GPU). We use a linear model for the cochlea that has produced results close to those obtained by Von Bèkesy. The principal characteristic of this cochlea model is that is a linear representation of the cochlea, being one of the most important models found in the literature, producing results close to those of Von Bèkesy, pioneer in the analysis and study of the human cochlea.

We use the finite difference method to discretize the ordinary differential equations (ODEs) that represents the properties of the mass, stiffness and damping of the cochlea, specifically of the Corti Organ, also named the micro mechanical model of the cochlea. We use Thomas’ algorithm to invert the matrix obtained from the discretization, and we implement both, a serial and a parallel algorithm for the numerical solution. We obtain a speedup of 284.09 and an efficiency of 0.568.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, New York (2008)

    MATH  Google Scholar 

  2. Elliott, S.J., Lineton, B., Ni, G.: Fluid coupling in a discrete model of cochlear mechanics. J. Acoust. Soc. Am. 130, 1441–1451 (2011)

    Article  Google Scholar 

  3. Neely, S.T.: A model for active elements in cochlear biomechanics. J. Acoust. Soc. Am. 79, 1472–1480 (1986)

    Article  Google Scholar 

  4. Békésy, G.: Concerning the pleasures of observing, and the mechanics of the inner ear. Nobel Lecture, December 11, 1961

    Google Scholar 

  5. Mario, J.H., Rodríguez, J.L.O., Guerra, S.S., Fernández, R.B.: Computational model of the cochlea using resonance analysis. Journal Revista Mexicana Ingeniería Biomédica 33(2), 77–86 (2012)

    Google Scholar 

  6. Mario, J.H.: Modelo mecánico acústico del oído interno en reconocimiento de voz, Ph. D. Thesis, Center for Computing Research-IPN, Junio, 2013

    Google Scholar 

  7. von Bèkèsy, G.: Experiments in hearing. Mc Graw Hill, New York (1960)

    Google Scholar 

  8. Hendrikus, D.: Cochlear Mechanics Introduction to a Time Domain Analysis of the Nonlinear Cochlea. Springer, New York (2012). ISBN 978-1-4419-6116-7

    Google Scholar 

  9. Divya, S., Olga, S., Patricia, L.: A frequency-position function for the human cochlear spiral ganglion. Audiol. Neurotol. 11(1), 16–20 (2006)

    Article  Google Scholar 

  10. Peterson, L.C., Bogert, B.P.: A dynamical theory of the cochlea. J. Acoust. Soc. Am. 22, 175–184 (1952)

    Article  Google Scholar 

  11. Rhode, W.S.: Observations of the vibration of the basilar membrane in squirrel monkeys using the mössbauer technique. J. Acoust. Soc. Am. 49, 1218–1231 (1971)

    Article  Google Scholar 

  12. Rhode, W.S., Robles, L.: Evidence of Mossbauer experiments for nonlinear vibration in the cochlea. J. Acoust. Soc. Am. 55, 558–596 (1974)

    Article  Google Scholar 

  13. Allen, J.B., Hirano, M.: Two-Dimensional cochlear fluid model: new results. J. Acoust. Soc. Am. 61, 110–119 (1971)

    Article  Google Scholar 

  14. Neely, S.T.: Finite difference solution of a two-dimensional mathematical model of the cochlea. J. Acoust. Soc. Am. 69, 1386–1396 (1981)

    Article  Google Scholar 

  15. Lesser, M.B., Berkeley, D.A.: Fluid Mechanics of the cochlea. Part 1. J. Fluid Mech. 51, 497–512 (1972)

    Article  MATH  Google Scholar 

  16. Siebert, W.M.: Ranke revisited-a simple short-wave cochlear model. J. Acoust. Soc. Am. 56, 594–600 (1974)

    Article  Google Scholar 

  17. Peskin, C.S.: Lectures on mathematical aspects of physiology. AMS Lect. Appl. Math. 19, 38–69 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Rhode, W.S.: Cochlear Mechanics. Ann. Rev. Physiol. 46, 231–246 (1984)

    Article  Google Scholar 

  19. Hudspeth, A.J.: The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752 (1985)

    Article  Google Scholar 

  20. Boer, S.E.: Mechanics of the cochlea: modeling effects. In: Dallos, P., Fay, R.R. (eds.) the cochlea. Springer, New York (1996)

    Google Scholar 

  21. Elliot, S.J., Ku, E.M., Lineton, B.A.: A state space model for cochlear mechanics. J. Acoust. Soc. Amer. 122, 2759–2771 (2007)

    Article  Google Scholar 

  22. Ku, E.M., Elliot, S.J., Lineton, B.A.: Statistics of instabilities in a state space model of the human cochlea. J. Acoust. Soc. Amer. 124, 1068–1079 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to the Center for Computing Research of the National Polytechnic Institute (IPN). This research was funded by the SIP project 2015104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Oropeza Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodríguez, J.L.O., Saldaña, J.F.R., Guerra, S.S. (2016). Implementation of the Macro and Micro Mechanical Cochlea Model in a GPU. In: Gitler, I., Klapp, J. (eds) High Performance Computer Applications. ISUM 2015. Communications in Computer and Information Science, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-32243-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32243-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32242-1

  • Online ISBN: 978-3-319-32243-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics