Skip to main content

RNA Dynamics in the Control of Circadian Rhythm

  • Chapter
  • First Online:
Book cover RNA Processing

Abstract

The circadian oscillator is based on transcription-translation feedback loops that generate 24 h oscillations in gene expression. Although circadian regulation of mRNA expression at the transcriptional level is one of the most important steps for the generation of circadian rhythms within the cell, multiple lines of evidence point to a disconnect between transcript oscillation and protein oscillation. This can be explained by regulatory RNA-binding proteins acting on the nascent transcripts to modulate their processing, export, translation and degradation rates. In this chapter we will review what is known about the different steps involved in circadian gene expression from transcription initiation to mRNA stability and translation efficiency. The role of ribonucleoprotein particles in the generation of rhythmic gene expression is only starting to be elucidated, but it is likely that they cooperate with the basal transcriptional machinery to help to maintain the precision of the clock under diverse cellular and environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855–867

    Article  CAS  PubMed  Google Scholar 

  3. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  CAS  PubMed  Google Scholar 

  4. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43(4):527–537

    Article  CAS  PubMed  Google Scholar 

  5. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309(5740):1514–1518

    Article  CAS  PubMed  Google Scholar 

  6. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim DY, Woo KC, Lee KH, Kim TD, Kim KT (2010) hnRNP Q and PTB modulate the circadian oscillation of mouse Rev-erb alpha via IRES-mediated translation. Nucleic Acids Res 38(20):7068–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang B, Everett LJ, Jager J, Briggs E, Armour SM, Feng D, Roy A, Gerhart-Hines Z, Sun Z, Lazar MA (2014) Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159(5):1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown SA, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, Rosbash M, Schibler U (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308(5722):693–696

    Article  CAS  PubMed  Google Scholar 

  11. Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332(6036):1436–1439

    Article  CAS  PubMed  Google Scholar 

  12. Fuller-Pace FV (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34(15):4206–4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, Reed R (2007) SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 26(6):867–881

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33(3):365–376. doi:10.1016/j.molcel.2008.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805. doi:10.1016/j.molcel.2011.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padmanabhan K, Robles MS, Westerling T, Weitz CJ (2012) Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337(6094):599–602

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt EE, Schibler U (1995) Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J Cell Biol 128(4):467–483

    Article  CAS  PubMed  Google Scholar 

  18. Dibner C, Sage D, Unser M, Bauer C, d’Eysmond T, Naef F, Schibler U (2009) Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 28(2):123–134

    Article  CAS  PubMed  Google Scholar 

  19. So WV, Rosbash M (1997) Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J 16(23):7146–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16(11):1107–1115

    Article  CAS  PubMed  Google Scholar 

  21. Robles MS, Cox J, Mann M (2014) In-Vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet 10(1), e1004047

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469(7331):498–503

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M (2013) Nascent-Seq analysis of Drosophila cycling gene expression. Proc Natl Acad Sci U S A 110(4):E275–E284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Menet JS, Rodriguez J, Abruzzi KC, Rosbash M (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Elife 1, e00011

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mollet IG, Ben-Dov C, Felício-Silva D, Grosso AR, Eleutério P, Alves R, Staller R, Silva TS, Carmo-Fonseca M (2010) Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome. Nucleic Acids Res 38:4740–4754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T (2011) Epigenetics in alternative pre-mRNA splicing. Cell 144:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McGlincy NJ, Valomon A, Chesham JE, Maywood ES, Hastings MH, Ule J (2012) Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 13(6):R54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Preußner M, Wilhelmi I, Schultz AS, Finkernagel F, Michel M, Möröy T, Heyd F (2014) Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell 54(4):651–662

    Article  PubMed  Google Scholar 

  32. Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23

    Article  CAS  PubMed  Google Scholar 

  33. Hunt AG, Xu R, Addepalli B, Rao S, Forbes KP, Meeks LR, Xing D, Mo M, Zhao H, Bandyopadhyay A, Dampanaboina L, Marion A, Von Lanken C, Li QQ (2008) Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling. BMC Genomics 9:220

    Article  PubMed  PubMed Central  Google Scholar 

  34. Richter JD (1999) Cytoplasmic polyadenylation in development and beyond. Microbiol Mol Biol Rev 63(2):446–456

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC (2001) Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol 1:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garbarino-Pico E, Niu S, Rollag MD, Strayer CA, Besharse JC, Green CB (2007) Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA 13(5):745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kojima S, Sher-Chen EL, Green CB (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 26(24):2724–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jouffe C, Cretenet G, Symul L, Martin E, Atger F, Naef F, Gachon F (2013) The circadian clock coordinates ribosome biogenesis. PLoS Biol 11(1), e1001455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keene JD (2010) Minireview: global regulation and dynamics of ribonucleic acid. Endocrinology 151(4):1391–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT (2009) Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation. Nucleic Acids Res 37(1):26–37

    Article  CAS  PubMed  Google Scholar 

  41. Woo KC, Ha DC, Lee KH, Kim DY, Kim TD, Kim KT (2010) Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation. Mol Cell Biol 30(1):197–205

    Article  CAS  PubMed  Google Scholar 

  42. Kim DY, Kwak E, Kim SH, Lee KH, Woo KC, Kim KT (2011) hnRNP Q mediates a phase-dependent translation-coupled mRNA decay of mouse Period3. Nucleic Acids Res 39(20):8901–8914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kojima S, Matsumoto K, Hirose M, Shimada M, Nagano M, Shigeyoshi Y, Hoshino S, Ui-Tei K, Saigo K, Green CB, Sakaki Y, Tei H (2007) LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc Natl Acad Sci U S A 104(6):1859–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dobbyn HC, Hill K, Hamilton TL, Spriggs KA, Pickering BM, Coldwell MJ, de Moor CH, Bushell M, Willis AE (2008) Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 27(8):1167–1174

    Article  CAS  PubMed  Google Scholar 

  45. Schepens B, Tinton SA, Bruynooghe Y, Parthoens E, Haegman M, Beyaert R, Cornelis S (2007) A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. EMBO J 26(1):158–169

    Article  CAS  PubMed  Google Scholar 

  46. Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC, Qin X, Sarnow P, Willis AE (2006) Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 23(3):401–412

    Article  CAS  PubMed  Google Scholar 

  47. Coste H, Rodríguez JC (2002) Orphan nuclear hormone receptor Rev-erbalpha regulates the human apolipoprotein CIII promoter. J Biol Chem 277(30):27120–27129

    Article  CAS  PubMed  Google Scholar 

  48. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  CAS  PubMed  Google Scholar 

  49. Teboul M, Guillaumond F, Gréchez-Cassiau A, Delaunay F (2008) The nuclear hormone receptor family round the clock. Mol Endocrinol 22(12):2573–2582

    Article  CAS  PubMed  Google Scholar 

  50. Ramakrishnan SN, Muscat GE (2006) The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Nucl Recept Signal 4, e009

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satchidananda Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benegiamo, G., Brown, S.A., Panda, S. (2016). RNA Dynamics in the Control of Circadian Rhythm. In: Yeo, G. (eds) RNA Processing. Advances in Experimental Medicine and Biology, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-29073-7_5

Download citation

Publish with us

Policies and ethics