Skip to main content

Electroceutical Approaches for the Treatment of Traumatic Brain Injury

  • Chapter
  • First Online:
Electroceuticals

Abstract

Existing treatments for traumatic brain injury (TBI) include surgical intervention for the acute phase and rehabilitative therapies for the chronic/recovery phase. There is a brief time period after TBI has occurred when surgical intervention can reduce cerebral ischemia, limiting the damage this would otherwise cause. For example, decompressive craniectomy, can treat intracranial hypertension following TBI and may also improve regional cerebral blood flow. Surgical evacuation of haematomas may also help return cerebral blood flow regulation to normal. Various forms of therapy are used in the rehabilitation process for humans following TBI. For example, speech therapy, occupational therapy and physiotherapy all play a key role in helping patients to return to as normal a level of functioning as possible. Cognitive therapies may focus on specific areas such as working memory or attention deficits. Psychotherapy can help patients to adapt to their disability, and lead to improvements in mood and self-esteem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic Brain Injury. Consensus conference. Rehabilitation of persons with traumatic brain injury. JAMA. 1999;282(10):974–83.

    Article  Google Scholar 

  2. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21(5):375–8.

    Article  PubMed  Google Scholar 

  3. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.

    PubMed  Google Scholar 

  4. Faul M, Xu L, Wald MM CV. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. 2010. p. 891–904.

    Google Scholar 

  5. Carroll L, Cassidy JD, Peloso P, Borg J, von Holst H, Holm L, et al. Prognosis for mild traumatic brain injury: results of the who collaborating centre task force on mild traumatic brain injury. J Rehabil Med. 2004;36(0):84–105.

    Article  Google Scholar 

  6. Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. J Head Trauma Rehabil. 2009;24(6):439–51.

    Article  PubMed  Google Scholar 

  7. Irimia A, Goh S-YM, Torgerson CM, Stein NR, Chambers MC, Vespa PM, et al. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clin Neurol Neurosurg. 2013;115(10):2159–65.

    Article  PubMed  Google Scholar 

  8. Taylor A, Butt W, Rosenfeld J, Shann F, Ditchfield M, Lewis E, et al. A randomized trial of very early decompressive craniectomy in children with traumatic brain injury and sustained intracranial hypertension. Childs Nerv Syst. 2001;17(3):154–62.

    Article  CAS  PubMed  Google Scholar 

  9. Huang AP-H, Tu Y-K, Tsai Y-H, Chen Y-S, Hong W-C, Yang C-C, et al. Decompressive craniectomy as the primary surgical intervention for hemorrhagic contusion. J Neurotrauma. 2008;25(11):1347–54.

    Article  PubMed  Google Scholar 

  10. Chauhan NB, Gatto R, Chauhan MB. Neuroanatomical correlation of behavioral deficits in the CCI model of TBI. J Neurosci Methods. 2010;190(1):1–9.

    Article  PubMed  Google Scholar 

  11. Elliott M, Parente F. Efficacy of memory rehabilitation therapy: a meta-analysis of TBI and stroke cognitive rehabilitation literature. Brain Inj. 2014;9052(12):1–7.

    Google Scholar 

  12. Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, et al. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma. 2005;22(12):1485–502.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith DC, Tan AA, Duke A, Neese SL, Clough RW, Browning RA, et al. Recovery of function after vagus nerve stimulation initiated 24 hours after fluid percussion brain injury. J Neurotrauma. 2006;23(10):1549–60.

    Article  PubMed  Google Scholar 

  14. Neese SL, Sherill LK, Tan AA, Roosevelt RW, Browning RA, Smith DC, et al. Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: An immunocytochemical study. Brain Res. 2007;1128(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  15. Clough RW, Neese SL, Sherill LK, Tan AA, Duke A, Roosevelt RW, et al. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation. Neuroscience. 2007;147(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  16. Bansal V, Ryu SY, Lopez N, Allexan S, Krzyzaniak M, Eliceiri B, et al. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation. 2012;35(1):214–20.

    Article  CAS  PubMed  Google Scholar 

  17. Lopez NE, Krzyzaniak MJ, Costantini TW, Putnam J, Hageny A-M, Eliceiri B, et al. Vagal nerve stimulation decreases blood-brain barrier disruption after traumatic brain injury. J Trauma Acute Care Surg. 2012;72(6):1562–6.

    Article  PubMed  Google Scholar 

  18. Pruitt DT, Schmid AN, Kim LJ, Abe CM, Trieu JL, Choua C, et al. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J Neurotrauma. 2016;33(9):871–9.

    Article  PubMed  Google Scholar 

  19. Zhou L, Lin J, Lin J, Kui G, Zhang J, Yu Y. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury. Neural Regen Res. 2014;9(17):1585–91.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chambers A, Bowen JM. Electrical stimulation for drug-resistant epilepsy: an evidence-based analysis. Ont Health Technol Assess Ser. 2013;13(18):1–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi C, Flanagan SR, Samadani U. Vagus nerve stimulation to augment recovery from severe traumatic brain injury impeding consciousness: a prospective pilot clinical trial. Neurol Res. 2013;35(3):263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab. 2011;31(5):1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fornai F, Ruffoli R, Giorgi FS, Paparelli A. The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur J Neurosci. 2011;33(12):2169–78.

    Article  PubMed  Google Scholar 

  24. Masuda T, Nakagawa S, Boku S, Nishikawa H, Takamura N, Kato A, et al. Noradrenaline increases neural precursor cells derived from adult rat dentate gyrus through β2 receptor. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  25. Young SZ, Taylor MM, Bordey A. Neurotransmitters couple brain activity to subventricular zone neurogenesis. Eur J Neurosci. 2011;33(6):1123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kamei J, Igarashi H, Kasuya Y. Modulation by serotonin of glutamate-induced lethality in mice. Res Commun Chem Pathol Pharmacol. 1991;74(2):167–84.

    CAS  PubMed  Google Scholar 

  27. Neuman RS, Thompson PM. Serotonin mediates suppression of focal epileptiform activity induced by noxious stimulation. Epilepsia. 1989;30(3):307–13.

    Article  CAS  PubMed  Google Scholar 

  28. Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL. Acetylcholine protection of adult pig retinal ganglion cells from glutamate-induced excitotoxicity. Invest Ophthalmol Vis Sci. 2004;45(5):1531–43.

    Article  PubMed  Google Scholar 

  29. Giuliani D, Ottani A, Altavilla D, Bazzani C, Squadrito F, Guarini S. Melanocortins and the cholinergic anti-inflammatory pathway. Adv Exp Med Biol. 2010;681:71–87.

    Article  CAS  PubMed  Google Scholar 

  30. Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med. 2011;51(5):967–77.

    Article  CAS  PubMed  Google Scholar 

  31. Englot DJ, Rolston JD, Wang DD, Hassnain KH, Gordon CM, Chang EF. Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. J Neurosurg. 2012;117(5):970–7.

    Article  PubMed  Google Scholar 

  32. Eissa N, Ghia JE. Immunomodulatory effect of ghrelin in the intestinal mucosa. Neurogastroenterol Motil. 2015;27(11):1519–27.

    Article  CAS  PubMed  Google Scholar 

  33. Neely JD, Christensen BM, Nielsen S, Agre P. Heterotetrameric composition of aquaporin-4 water channels. Biochemistry. 1999;38(34):11156–63.

    Article  CAS  PubMed  Google Scholar 

  34. Sun M-C, Honey CR, Berk C, Wong NLM, Tsui JKC. Regulation of aquaporin-4 in a traumatic brain injury model in rats. J Neurosurg. 2003;98(3):565–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ay I, Lu J, Ay H, Gregory SA. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia. Neurosci Lett. 2009;459(3):147–51.

    Article  CAS  PubMed  Google Scholar 

  36. Ay I, Sorensen AG, Ay H. Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res. 2011;1392:110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Englot DJ, Chang EF, Auguste KI. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type. Neurosurg Clin N Am. 2011;22(4):443–8. v

    Article  PubMed  Google Scholar 

  38. Stefan H, Kreiselmeyer G, Kerling F, Kurzbuch K, Rauch C, Heers M, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):e115–8.

    Article  PubMed  Google Scholar 

  39. He W, Jing X, Wang X, Rong P, Li L, Shi H, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav. 2013;28(3):343–6.

    Article  PubMed  Google Scholar 

  40. Rong P, Liu A, Zhang J, Wang Y, Yang A, Li L, et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin Med J (Engl). 2014;127(2):300–4.

    PubMed  Google Scholar 

  41. Aihua L, Lu S, Liping L, Xiuru W, Hua L, Yuping W. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014;39:105–10.

    Article  PubMed  Google Scholar 

  42. Goadsby PJ, Grosberg BM, Mauskop A, Cady R, Simmons KA. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014;34(12):986–93.

    Article  CAS  PubMed  Google Scholar 

  43. Grazzi L, Padovan A, Barbanti P. Role of neurostimulation in migraine. Neurol Sci. 2015;36 Suppl 1(S1):121–3.

    Article  CAS  PubMed  Google Scholar 

  44. Barbanti P, Grazzi L, Egeo G, Padovan AM, Liebler E, Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J Headache Pain. 2015;16(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. 2015;16(1):543.

    Article  PubMed  Google Scholar 

  46. Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm. 2013;120(5):821–7.

    Article  PubMed  Google Scholar 

  47. Fang J, Rong P, Hong Y, Fan Y, Liu J, Wang H, et al. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol Psychiatry. 2016;79(4):266–73.

    Article  PubMed  Google Scholar 

  48. Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, et al. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psych. 2012;3:70.

    Google Scholar 

  49. Kreuzer PM, Landgrebe M, Resch M, Husser O, Schecklmann M, Geisreiter F, et al. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 2014;7(5):740–7.

    Article  PubMed  Google Scholar 

  50. Lehtimäki J, Hyvärinen P, Ylikoski M, Bergholm M, Mäkelä JP, Aarnisalo A, et al. Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol. 2013;133(4):378–82.

    Article  PubMed  Google Scholar 

  51. Hyvärinen P, Yrttiaho S, Lehtimäki J, Ilmoniemi RJ, Mäkitie A, Ylikoski J, et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 2014;36(3):e76–85.

    Article  Google Scholar 

  52. Dietrich S, Smith J, Scherzinger C, Hofmann-Preiss K, Freitag T, Eisenkolb A, et al. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed Tech (Berl). 2008;53(3):104–111.

    Google Scholar 

  53. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8(3):624–36.

    Article  PubMed  Google Scholar 

  54. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2(3):145–56.

    Article  PubMed  Google Scholar 

  55. Chistyakov AV, Soustiel JF, Hafner H, Elron M, Feinsod M. Altered excitability of the motor cortex after minor head injury revealed by transcranial magnetic stimulation. Acta Neurochir. 1998;140(5):467–72.

    Article  CAS  PubMed  Google Scholar 

  56. Lefaucheur J. Methods of therapeutic cortical stimulation. Neurophysiol Clin. 2009;39(1):1–14.

    Article  PubMed  Google Scholar 

  57. Leung A, Shukla S, Fallah A, Song D, Lin L, Golshan S, et al. Repetitive transcranial magnetic stimulation in managing mild traumatic brain injury-related headaches. Neuromodulation. 2016;19(2):133–41.

    Article  PubMed  Google Scholar 

  58. Yoon MS, Han J, Tse WW, Rogers R. Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. Am Heart J. 1977;93(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hiscock A, Miller S, Rothwell J, Tallis RC, Pomeroy VM. Informing dose-finding studies of repetitive transcranial magnetic stimulation to enhance motor function: a qualitative systematic review. Neurorehabil Neural Repair. 2008;22(3):228–49.

    Article  PubMed  Google Scholar 

  60. Cosentino G, Giglia G, Palermo A, Panetta ML, Lo Baido R, Brighina F, et al. A case of post-traumatic complex auditory hallucinosis treated with rTMS. Neurocase. 2010;16(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  61. Cavinato M, Iaia V, Piccione F. Repeated sessions of sub-threshold 20-Hz rTMS. Potential cumulative effects in a brain-injured patient. Clin Neurophysiol. 2012;123(9):1893–5.

    Article  CAS  PubMed  Google Scholar 

  62. Bonni S, Mastropasqua C, Bozzali M, Caltagirone C, Koch G. Theta burst stimulation improves visuo-spatial attention in a patient with traumatic brain injury. Neurol Sci. 2013;34(11):2053–6.

    Article  PubMed  Google Scholar 

  63. Kreuzer PM, Landgrebe M, Frank E, Langguth B. Repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus after traumatic brain injury: a case study. J Head Trauma Rehabil. 2013;28(5):386–9.

    Article  PubMed  Google Scholar 

  64. Louise-Bender Pape T, Rosenow J, Lewis G, Ahmed G, Walker M, Guernon A, et al. Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery. Brain Stimul. 2009;2(1):22–35.

    Article  PubMed  Google Scholar 

  65. George MS, Raman R, Benedek DM, Pelic CG, Grammer GG, Stokes KT, et al. A two-site pilot randomized 3 day trial of high dose left prefrontal repetitive transcranial magnetic stimulation (rTMS) for suicidal inpatients. Brain Stimul. 2014;7(3):421–31.

    Article  PubMed  Google Scholar 

  66. Mori F, Koch G, Foti C, Bernardi G, Centonze D. The use of repetitive transcranial magnetic stimulation (rTMS) for the treatment of spasticity. Prog Brain Res. 2009;175:429–39.

    Article  PubMed  Google Scholar 

  67. Fitzgerald PB, Hoy KE, Herring SE, McQueen S, Peachey AVJ, Segrave RA, et al. A double blind randomized trial of unilateral left and bilateral prefrontal cortex transcranial magnetic stimulation in treatment resistant major depression. J Affect Disord. 2012;139(2):193–8.

    Article  PubMed  Google Scholar 

  68. Fitzgerald PB, Hoy KE, Maller JJ, Herring S, Segrave R, McQueen S, et al. Transcranial magnetic stimulation for depression after a traumatic brain injury: a case study. J ECT. 2011;27(1):38–40.

    Article  PubMed  Google Scholar 

  69. Hsu W-Y, Cheng C-H, Liao K-K, Lee I-H, Lin Y-Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke. 2012;43(7):1849–57.

    Article  PubMed  Google Scholar 

  70. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115(6):1239–48.

    Article  PubMed  Google Scholar 

  71. Yamamoto T, Katayama Y, Kobayashi K, Oshima H, Fukaya C, Tsubokawa T. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 2010;32(7):1145–51.

    Article  PubMed  Google Scholar 

  72. Sellal F, Hirsch E, Barth P, Blond S, Marescaux C. A case of symptomatic hemidystonia improved by ventroposterolateral thalamic electrostimulation. Mov Disord. 1993;8(4):515–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kim JP, Chang WS, Chang JW. The long-term surgical outcomes of secondary hemidystonia associated with post-traumatic brain injury. Acta Neurochir. 2012;154(5):823–30.

    Article  PubMed  Google Scholar 

  74. Shahaduzzaman M, Acosta S, Bickford PC, Borlongan CV. α-Synuclein is a pathological link and therapeutic target for Parkinson’s disease and traumatic brain injury. Med Hypotheses. 2013;81(4):675–80.

    Article  CAS  PubMed  Google Scholar 

  75. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527 Pt 3:633–9.

    Article  CAS  PubMed  Google Scholar 

  76. Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219(1):14–9.

    Article  PubMed  Google Scholar 

  77. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215–22.

    Article  PubMed  Google Scholar 

  78. Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord. 2006;21(10):1693–702.

    Article  PubMed  Google Scholar 

  79. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.

    PubMed  Google Scholar 

  80. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–3.

    Article  CAS  PubMed  Google Scholar 

  81. Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209.

    Article  PubMed  Google Scholar 

  82. Madhavan S, Weber KA, Stinear JW. Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res. 2011;209(1):9–17.

    Article  PubMed  Google Scholar 

  83. Ulam F, Shelton C, Richards L, Davis L, Hunter B, Fregni F, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol. 2015;126(3):486–96.

    Article  CAS  PubMed  Google Scholar 

  84. Kang E-K, Kim D-Y, Paik N-J. Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J Rehabil Med. 2012;44(4):346–50.

    Article  PubMed  Google Scholar 

  85. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–5.

    Article  CAS  PubMed  Google Scholar 

  86. Yook S-W, Park S-H, Seo J-H, Kim S-J, Ko M-H. Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – a case report. Ann Rehabil Med. 2011;35(4):579–82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Redgrave D Phil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Leung, H., Ali, A., Heath, C., Majid, A., Redgrave, J. (2017). Electroceutical Approaches for the Treatment of Traumatic Brain Injury. In: Majid, A. (eds) Electroceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-28612-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28612-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28610-5

  • Online ISBN: 978-3-319-28612-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics