Skip to main content

NMR Relaxometry and Imaging of Dairy Products

  • Reference work entry
  • First Online:

Abstract

This chapter focuses on nuclear magnetic resonance relaxation, pulsed field gradients NMR, and magnetic resonance imaging applied to the characterization of dairy products and dairy processes. This chapter is an updated version of a previously published review (Mariette F. Nuclear magnetic resonance: principles. In: Fuquay JW, Fox PF, Mc Sweeney PLH, editors. Encyclopedia of dairy sciences. 2nd ed. San Diego: Academic Press; 2010). This chapter is organized in several parts. The first part provides an overview on the interpretation of water NMR relaxation and its application in dairy systems. It starts with diluted models where the diffusion exchange is fast and only chemical exchange and molecular mobility are considered. Next, the regime of slow diffusion exchange is considered and applications to concentrated and complex systems are discussed. The second part of this chapter focuses on the special case of fat relaxation in the liquid and solid states. The third part includes all the aspects related to the use of the pulsed field gradient NMR technique for water diffusion and molecular probe diffusion. The fourth part provides some insights into applications of magnetic resonance imaging.

This chapter is dedicated to Brian Hills for his impressive contribution to NMR science and its application in food.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mariette F. Nuclear magnetic resonance: principles. In: Fuquay JW, Fox PF, Mc Sweeney PLH, editors. Encyclopedia of dairy sciences. 2nd ed. San Diego: Academic Press; 2010.

    Google Scholar 

  2. Bouchoux A, Schorr D, Daffe A, Cambert M, Gesan-Guiziou G, Mariette F. Molecular mobility in dense protein systems: an investigation through 1H NMR relaxometry and diffusometry. J Phys Chem B. 2012;116(38):11744–53.

    Article  CAS  Google Scholar 

  3. Moller SM, Whittaker AK, Stokes JR, Gidley MJ, Andersen U, Bertram HC. Molecular water motions of skim milk powder solutions during acidification studied by 17O and 1H nuclear magnetic resonance and rheology. J Agric Food Chem. 2011;59(18):10097–103.

    Article  CAS  Google Scholar 

  4. Colsenet R, Mariette F, Cambert M. NMR relaxation and water self-diffusion studies in whey protein solutions and gels. J Agric Food Chem. 2005;53(17):6784–90.

    Article  CAS  Google Scholar 

  5. Hills BP, Takacs SF, Belton PS. A new interpretation of proton NMR relaxation time measurements of water in food. Food Chem. 1990;37:95–111.

    Article  CAS  Google Scholar 

  6. Mariette F, Tellier C, Brule G, Marchal P. Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. J Dairy Res. 1993;60(2):175–88.

    Article  Google Scholar 

  7. Gottwald A, Creamer LK, Hubbard PL, Callaghan PT. Diffusion, relaxation, and chemical exchange in casein gels: a nuclear magnetic resonance study. J Chem Phys. 2005;122(3):034506.

    Article  CAS  Google Scholar 

  8. Hinrichs R, Gotz J, Noll M, Wolfschoon A, Eibel H, Weisser H. Characterisation of different treated whey protein concentrates by means of low-resolution nuclear magnetic resonance. Int Dairy J. 2004;14(9):817–27.

    Article  CAS  Google Scholar 

  9. Le Dean A, Mariette F, Marin M. (1)H nuclear magnetic resonance relaxometry study of water state in milk protein mixtures. J Agric Food Chem. 2004;52(17):5449–55.

    Article  CAS  Google Scholar 

  10. Mariette F. NMR relaxometry and MRI for food quality control application to dairy products and processes. In: Belton PS, Gil AM, Webb GA, Rutledge D, editors. Magnetic resonance in food science: latest developments. Cambridge: Royal Society of Chemistry Special Publications; 2003. p. 209–22.

    Google Scholar 

  11. Hurlimann MD, Burcaw L, Song YQ. Quantitative characterization of food products by two-dimensional D-T2 and T1-T2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297(1):303–11.

    Article  CAS  Google Scholar 

  12. Hinrichs R, Bulca S, Kulozik U. Water mobility during renneting and acid coagulation of casein solutions: a differentiated low-resolution nuclear magnetic resonance analysis. Int J Dairy Technol. 2007;60(1):37–43.

    Article  CAS  Google Scholar 

  13. Tellier C, Mariette F, Guillement JP, Marchal P. Evolution of water proton nuclear magnetic relaxation during milk coagulation and syneresis – structural implications. J Agric Food Chem. 1993;41(12):2259–66.

    Article  CAS  Google Scholar 

  14. Salomonsen T, Sejersen MT, Viereck N, Ipsen R, Engelsen SB. Water mobility in acidified milk drinks studied by low-field H-1 NMR. Int Dairy J. 2007;17(4):294–301.

    Article  CAS  Google Scholar 

  15. Indrawati L, Stroshine RL, Narsimhan G. Low-field NMR: a tool for studying protein aggregation. J Sci Food Agric. 2007;87(12):2207–16.

    Article  CAS  Google Scholar 

  16. Sorensen H, Mortensen K, Sorland GH, Larsen FH, Paulsson M, Ipsen R. Dynamic ultra-high pressure homogenisation of whey protein-depleted milk concentrate. Int Dairy J. 2015;46:12–21.

    Article  CAS  Google Scholar 

  17. Mok C, Qi J, Chen P, Ruan R. NMR relaxometry of water in set yogurt during fermentation. Food Sci Biotechnol. 2008;17(5):895–8.

    Google Scholar 

  18. Burgardt VDD, de Oliveira DF, Evseev IG, Haminiuk CWI, Waszczynskyj N. Addition of carboxymethylcellulose in gelified caseinomacropeptide systems: NMR, X-ray diffraction and rheology. J Food Nutr Res. 2012;51(4):207–16.

    CAS  Google Scholar 

  19. Goetz J, Koehler P. Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT Food Sci Technol. 2005;38(5):501–12.

    Article  CAS  Google Scholar 

  20. Oztop MH, Rosenberg M, Rosenberg Y, McCarthy KL, McCarthy MJ. Magnetic Resonance Imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels. J Food Sci. 2010;75(8):E508–E15.

    Article  CAS  Google Scholar 

  21. Wichchukit S, Oztop MH, McCarthy MJ, McCarthy KL. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocoll. 2013;33(1):66–73.

    Article  CAS  Google Scholar 

  22. Celebioglu HY, Gudjonsdottir M, Meier S, Duus JO, Lee S, Chronakis IS. Spectroscopic studies of the interactions between beta-lactoglobulin and bovine submaxillary mucin. Food Hydrocoll. 2015;50:203–10.

    Article  CAS  Google Scholar 

  23. He JS, Mu TH, Guo XS, Zhu SM, Azuma N, Kanno C. Comparison of the gel-forming ability and gel properties of alpha-lactalbumin, lysozyme and myoglobin in the presence of beta-lactoglobulin under high pressure. Food Hydrocoll. 2013;33(2):415–24.

    Article  CAS  Google Scholar 

  24. Hansen CL, Rinnan A, Engelsen SB, Janhoj T, Micklander E, Andersen U, et al. Effect of gel firmness at cutting time, pH, and temperature on rennet coagulation and syneresis: an in situ H-1 NMR relaxation study. J Agric Food Chem. 2010;58(1):513–9.

    Article  CAS  Google Scholar 

  25. Peters J, Vergeldt FJ, Van As H, Luyten H, Boom RM, Van der Goot AJ. Time domain nuclear magnetic resonance as a method to determine and characterize the water-binding capacity of whey protein microparticles. Food Hydrocoll. 2016;54:170–8.

    Article  CAS  Google Scholar 

  26. Hinrichs R, Gotz J, Noll M, Wolfschoon A, Eibel H, Weisser H. Characterisation of the water-holding capacity of fresh cheese samples by means of low resolution nuclear magnetic resonance. Food Res Int. 2004;37(7):667–76.

    Article  Google Scholar 

  27. Davenel A, Schuck P, Mariette F, Brule G. NMR relaxometry as a non-invasive tool to characterize milk powders. Lait. 2002;82(4):465–73.

    Article  CAS  Google Scholar 

  28. Kuo MI, Gunasekaran S, Johnson M, Chen C. Nuclear magnetic resonance study of water mobility in pasta filata and non-pasta filata Mozzarella. J Dairy Sci. 2001;84(9):1950–8.

    Article  CAS  Google Scholar 

  29. Gianferri R, D’Aiuto V, Curini R, Delfini M, Brosio E. Proton NMR transverse relaxation measurements to study water dynamic states and age-related changes in Mozzarella di Bufala Campana cheese. Food Chem. 2007;105(2):720–6.

    Article  CAS  Google Scholar 

  30. Andersen CM, Frost MB, Viereck N. Spectroscopic characterization of low- and non-fat cream cheeses. Int Dairy J. 2010;20(1):32–9.

    Article  CAS  Google Scholar 

  31. Moller SM, Hansen TB, Andersen U, Lillevang SK, Rasmussen A, Bertram HC. Water properties in cream cheeses with variations in pH, fat, and salt content and correlation to microbial survival. J Agric Food Chem. 2012;60(7):1635–44.

    Article  CAS  Google Scholar 

  32. Chaland B, Mariette F, Marchal P, De Certaines J. H1 nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese. J Dairy Res. 2000;67(4):609–18.

    Article  CAS  Google Scholar 

  33. Metais A, Cambert M, Riaublanc A, Mariette F. Influence of fat globule membrane composition on water holding capacity and water mobility in casein rennet gel: a nuclear magnetic resonance self-diffusion and relaxation study. Int Dairy J. 2006;16(4):344–53.

    Article  CAS  Google Scholar 

  34. Bertram HC, Wiking L, Nielsen JH, Andersen HJ. Direct measurement of phase transitions in milk fat during cooling of cream – a low-field NMR approach. Int Dairy J. 2005;15(10):1056–63.

    Article  CAS  Google Scholar 

  35. Mulas G, Anedda R, Longo DL, Roggio T, Uzzau S. An MRI method for monitoring the ripening of Grana Padano cheese. Int Dairy J. 2016;52:19–25.

    Article  CAS  Google Scholar 

  36. Chen L, Liu H. Effect of emulsifying salts on the physicochemical properties of processed cheese made from Mozzarella. J Dairy Sci. 2012;95(9):4823–30.

    Article  CAS  Google Scholar 

  37. Vogt SJ, Smith JR, Seymour JD, Carr AJ, Golding MD, Codd SL. Assessment of the changes in the structure and component mobility of Mozzarella and Cheddar cheese during heating. J Food Eng. 2015;150:35–43.

    Article  Google Scholar 

  38. Kuo MI, Anderson ME, Gunasekaran S. Determining effects of freezing on pasta filata and non-pasta filata Mozzarella cheeses by nuclear magnetic resonance Imaging. J Dairy Sci. 2003;86(8):2525–36.

    Article  CAS  Google Scholar 

  39. Noronha N, Duggan E, Ziegler GR, O’Riordan ED, O’Sullivan M. Inclusion of starch in imitation cheese: its influence on water mobility and cheese functionality. Food Hydrocoll. 2008;22(8):1612–21.

    Article  CAS  Google Scholar 

  40. Mulas G, Roggio T, Uzzau S, Anedda R. A new magnetic resonance imaging approach for discriminating Sardinian sheep milk cheese made from heat-treated or raw milk. J Dairy Sci. 2013;96(12):7393–403.

    Article  CAS  Google Scholar 

  41. Schmitz-Schug I, Gianfrancesco A, Kulozik U, Foerst P. Physical state, molecular mobility and chemical stability of powdered dairy formulations. Food Res Int. 2013;53(1):268–77.

    Article  CAS  Google Scholar 

  42. Danthine S. Physicochemical and structural properties of compound dairy fat blends. Food Res Int. 2012;48(1):187–95.

    Article  CAS  Google Scholar 

  43. Duval FP, van Duynhoven JPM, Bot A. Practical implications of the phase-compositional assessment of lipid-based food products by time-domain NMR. J Am Oil Chem Soc. 2006;83(11):905–12.

    Article  CAS  Google Scholar 

  44. Mariette F, Lucas T. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams. J Agric Food Chem. 2005;53(5):1317–27.

    Article  CAS  Google Scholar 

  45. Mazzanti G, Li MY, Marangoni AG, Idziak SHJ. Effects of shear rate variation on the nanostructure of crystallizing triglycerides. Cryst Growth Des. 2011;11(10):4544–50.

    Article  CAS  Google Scholar 

  46. Adam-Berret M, Riaublanc A, Mariette F. Effects of crystal growth and polymorphism of triacylglycerols on NMR relaxation parameters. 2. Study of a tricaprin-tristearin mixture. Cryst Growth Des. 2009;9(10):4281–8.

    Article  CAS  Google Scholar 

  47. Lucas T, Le Ray D, Barey P, Mariette F. NMR assessment of ice cream: effect of formulation on liquid and solid fat. Int Dairy J. 2005;15(12):1225–33.

    Article  CAS  Google Scholar 

  48. Adam-Berret M, Boulard M, Riaublanc A, Mariette F. Evolution of fat crystal network microstructure followed by NMR. J Agric Food Chem. 2011;59(5):1767–73.

    Article  CAS  Google Scholar 

  49. Mariette F, Topgaard D, Jonsson B, Soderman O. H-1 NMR diffusometry study of water in casein dispersions and gels. J Agric Food Chem. 2002;50(15):4295–302.

    Article  CAS  Google Scholar 

  50. Maruyama Y, Numamoto Y, Saito H, Kita R, Shinyashiki N, Yagihara S, et al. Complementary analyses of fractal and dynamic water structures in protein-water mixtures and cheeses. Colloids Surf A. 2014;440:42–8.

    Article  CAS  Google Scholar 

  51. Castell-Palou A, Rossello C, Femenia A, Simal S. Simultaneous quantification of fat and water content in Cheese by TD-NMR. Food Bioproc Tech. 2013;6(10):2685–94.

    Article  CAS  Google Scholar 

  52. Gotz J, Zick K, Hinrichs R, Weisser H. Characterisation of carrageenan and whey protein gels using NMR PGSTE diffusion experiments. Eur Food Res Technol. 2004;218(4):323–32.

    Article  CAS  Google Scholar 

  53. Colsenet R, Soderman O, Mariette F. Effect of casein concentration in suspensions and gels on poly(ethylene glycol)s NMR self-diffusion measurements. Macromolecules. 2005;38(22):9171–9.

    Article  CAS  Google Scholar 

  54. Le Feunteun S, Mariette F. Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by 1H PFG-NMR. J Agric Food Chem. 2007;55:10764–72.

    Article  CAS  Google Scholar 

  55. Le Feunteun S, Mariette F. Effects of Acidification with and without rennet on a concentrated casein system: a kinetic NMR probe diffusion study. Macromolecules. 2008;41(6):2079–86.

    Article  CAS  Google Scholar 

  56. Salami S, Rondeau-Mouro C, van Duynhoven J, Mariette F. PFG-NMR self-diffusion in casein dispersions: effects of probe size and protein aggregate size. Food Hydrocoll. 2013;31(2):248–55.

    Article  CAS  Google Scholar 

  57. Salami S, Rondeau-Mouro C, van Duynhoven J, Mariette F. Probe mobility in native phosphocaseinate suspensions and in a concentrated rennet gel: effects of probe flexibility and size. J Agric Food Chem. 2013;61(24):5870–9.

    Article  CAS  Google Scholar 

  58. Salami S, Rondeau-Mouro C, Barhoum M, van Duynhoven J, Mariette F. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels. Biopolymers. 2014;101(9):959–65.

    Article  CAS  Google Scholar 

  59. Le Feunteun S, Ouethrani M, Mariette F. The rennet coagulation mechanisms of a concentrated casein suspension as observed by PFG-NMR diffusion measurements. Food Hydrocoll. 2012;27(2):456–63.

    Article  CAS  Google Scholar 

  60. Alekseev GV, Khripov AA. Method of rapid remote control of casein concentration in dairy products in unopened packages. J Food Process Eng. 2015;38(1):11–8.

    Article  CAS  Google Scholar 

  61. Altan A, Oztop MH, McCarthy KL, McCarthy MJ. Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry. J Food Eng. 2011;107(2):200–7.

    Article  Google Scholar 

  62. Musse M, Challois S, Huc D, Quellec S, Mariette F. MRI method for investigation of eye growth in semi-hard cheese. J Food Eng. 2014;121:152–8.

    Article  Google Scholar 

  63. Huc D, Roland N, Grenier D, Challois S, Michon C, Mariette F. Influence of salt content on eye growth in semi-hard cheeses studied using magnetic resonance imaging and CO2 production measurements. Int Dairy J. 2014;35(2):157–65.

    Article  CAS  Google Scholar 

  64. Grenier D, Laridon Y, Le Ray D, Challois S, Lucas T. Monitoring of single eye growth under known gas pressure: magnetic resonance imaging measurements and insights into the mechanical behaviour of a semi-hard cheese. J Food Eng. 2016;171:119–28.

    Article  Google Scholar 

  65. Oztop MH, McCarthy KL, McCarthy MJ, Rosenberg M. Monitoring the effects of divalent ions (Mn+2 and Ca+2) in heat-set whey protein gels. LWT Food Sci Technol. 2014;56(1):93–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Mariette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mariette, F. (2018). NMR Relaxometry and Imaging of Dairy Products. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_38

Download citation

Publish with us

Policies and ethics