Skip to main content

High-Nitrogen Energetic Materials of 1,2,4,5-Tetrazine Family: Thermal and Combustion Behaviors

  • Chapter
  • First Online:

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

Considerable recent attention has been focused on research and development of high-nitrogen energetic materials. Among polynitrogen energetic materials, 1,2,4,5-tetrazine derivatives are of particular interest owing to their high density, thermostability, and remarkable insensitivity to electrostatic discharge, friction, and impact. The purpose of the present work is to analyze possible application areas of different types of tetrazine-based energetic materials reasoning from their peculiar combustion properties. Study of thermal stability of tetrazine derivatives has shown that, in most cases, the stability of the substance is determined by decomposition of the less stable substitute rather than the tetrazine cycle itself. Combustion and thermocouple-aided studies have revealed that tetrazines are mostly low-volatile substances with high burning surface temperatures that, in turn, predetermine the condensed-phase combustion mechanism. The lack or low content of oxygen in tetrazine-based energetic materials results in formation of high-enthalpy species among combustion products, thus preventing from full release of energy stored in the material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chavez DE, Hiskey MA (1999) 1,2,4,5-Tetrazine based energetic materials. J Energy Mater 17(4):357–377

    Article  Google Scholar 

  2. Hochstrasser RM, King DS (1975) Isotopically selective photochemistry in molecular crystals. J Am Chem Soc 97(16):4760–4762

    Article  Google Scholar 

  3. Scheiner AC, Scuseria GE, Schaefer HF III (1986) Mechanism of the photodissociation of s-tetrazine: a unimolecular triple dissociation. J Am Chem Soc 108(26):8160–8162

    Article  Google Scholar 

  4. Oxley J, Smith J, Zhang J (2000) Decomposition pathways of some 3,6-substituted s-tetrazines. J Phys Chem A 104:6769–6777

    Article  Google Scholar 

  5. Chavez DE, Hiskey MA, Huynh MH, Naud DL, Son SF, Tappan BC (2006) The combustion products of novel high-nitrogen energetic materials. J Pyrotech 23:70–80

    Google Scholar 

  6. Clavier G, Audebert P (2010) s-Tetrazines as building blocks for new functional molecules and molecular materials. Chem Rev 110(6):3299–3314

    Article  Google Scholar 

  7. Pinner A (1893) Action of hydrazine on imido-ethers. Ber Dtsch Chem Ges 26:2126–2135

    Article  Google Scholar 

  8. Coburn MD, Hiskey MA, Lee KY, Ott DG, Stinecipher MM (1993) Oxidations of 3,6-diamino-1,2,4,5-tetrazine and 3,6-bis(S, S-dimethylsulfilimino)-1,2,4,5-tetrazine. J Heterocycl Chem 30(6):1593–1595

    Article  Google Scholar 

  9. Sheremetev AB, Palysaeva NV, Struchkova MI, Suponitsky KY (2012) A mild and efficient synthesis of 3-hetarylamino-s-tetrazines. Mendeleev Commun 22(6):302–304

    Article  Google Scholar 

  10. LoPresti V (2003) Versatile explosives, Los Alamos Res Q. Summer:4–12

    Google Scholar 

  11. Fallis S, Reed R, Lu YCh, Wierenga PH, Holland GF (2000) Advanced propellant/additive development for fire suppressing gas generators. Proceedings of the halon options technical working conference, pp 361–370

    Google Scholar 

  12. Fallis S, Reed R, McCormick JL, Wilson KA, Holland GF (2001) Advanced propellant/additive development for fire suppressing gas generators: hybrid systems. Proceedings of the halon options technical working conference, Albuquerque, pp 364–372

    Google Scholar 

  13. Enerson JR, Lucius JH, Battat D, Battat E, Mackal G (2009) Apparatus and method for using tetrazine-based energetic material. US Patent 20090301601

    Google Scholar 

  14. Ali AN, Son SF, Hiskey MA, Naud DL (2004) Novel high nitrogen propellant use in solid fuel micropropulsion. J Prop Power 20(1):120–126

    Article  Google Scholar 

  15. Wu XZ, Dong PT, Li ZZ, Li SG, Liu QH, Xu C, Wan H (2009) Design, fabrication and characterization of a solid propellant microthruster. Proceedings of the 4th IEEE international conference on nano/micro engineered and molecular systems, pp 476–479

    Google Scholar 

  16. Yi JH, Zhao FQ, Wang BZ, Liu Q, Zhou C, Hu RZ, Ren YH, Xu SY, Xu KZ, Ren XN (2010) Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant. J Hazard Mater 181(1–3):432–439

    Article  Google Scholar 

  17. Chavez DE, Hiskey MA (1998) High nitrogen pyrotechnic compositions. J Pyrotech 7:11–14

    Google Scholar 

  18. Hiskey MA, Chavez DE, Naud DL (2001) Insensitive high-nitrogen compounds. Report LA-UR-01−1493, pp 1–10

    Google Scholar 

  19. Hiskey MA, Chavez DE, Naud D (2002) Preparation of 3,3′-azobis (6-amino-1,2,4,5-tetrazine). US Patent 6342589

    Google Scholar 

  20. Kerth J, Löbbecke S (2002) Synthesis and characterization of 3,3′-azobis (6-amino-1,2,4,5-tetrazine) DAAT – A new promising nitrogen-rich compound. Prop Exp Pyrol 27(3):111–118

    Article  Google Scholar 

  21. Chavez DE, Hiskey MA, Gilardi RD (2000) 3,3′-Azobis (6-amino-1,2,4,5-tetrazine): a novel high‐nitrogen energetic material. Angew Chem 112(10):1861–1863

    Article  Google Scholar 

  22. Naud DL, Hiskey MA, Kramer JF, Bishop R, Harry H, Son S.F. Sullivan G (2002) High-nitrogen explosives. Proc. 29th Inter. Pyro Seminar. Westminster, 14–19 July

    Google Scholar 

  23. Hiskey MA, Chavez DE, Naud DL (2002) Propellant containing 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine or salts thereof. US Patent 6458227

    Google Scholar 

  24. Atwood AI, Bui DT, Curran PO, Ciaramitaro DA, Lee KB (2002) Burning rate studies of energetic materials. Proceedings of the 8th international workshop on Comb Prop Naples, Italy. pp 1–11

    Google Scholar 

  25. Chavez DE, Hiskey MA, Naud DL (2004) Tetrazine explosives. Prop Exp Pyro 29(4):209–215

    Article  Google Scholar 

  26. Sinditskii VP, Egorshev VY, Rudakov GF, Burzhava AV, Filatov SA, Sang LD (2012) Thermal behavior and combustion mechanism of high-nitrogen energetic materials DHT and BTATz. Thermochim Acta 535:48–57

    Article  Google Scholar 

  27. Saikia A, Sivabalan R, Polke BG, Gore GM, Singh A, Subhananda RA, Sikder AK (2009) Synthesis and characterization of 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz): novel high-nitrogen content insensitive high energy material. J Hazard Mater 170:306–313

    Article  Google Scholar 

  28. Loebbecke S, Schuppler H, Schweikert W (2003) Thermal analysis of the extremely nitrogen-rich solids BTT and DAAT. J Therm Anal Calorim 72(2):453–463

    Article  Google Scholar 

  29. Oxley JC, Smith JL, Heng C (2002) Thermal decomposition of high-nitrogen energetic compounds – dihydrazido-s-tetrazine salts. Thermochim Acta 384:91–99

    Article  Google Scholar 

  30. Stone EW, Maki AH (1963) ESR study of polyazine anions. J Chem Phys 39:1635–1642

    Article  Google Scholar 

  31. Xing XL, Zhao FQ, Xue L, Yi JH, Pei Q, Hao HX, Xu S, Gao HX, Hu RZ (2009) Study on thermal behavior of 3, 6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine (BTATz) by using microcalorimeter. Proceedings of the 8th international autumn seminar on Prop Exp Pyro. Kunming, 22–25 Sept. pp 158–160

    Google Scholar 

  32. Kiselev VG, Gritsan NP (2009) Theoretical study of the 5-aminotetrazole thermal decomposition. J Phys Chem A 113(15):3677–3684

    Article  Google Scholar 

  33. Kiselev VG, Cheblakov PB, Gritsan NP (2011) Tautomerism and thermal decomposition of tetrazole: high-level ab initio study. J Phys Chem A 115(9):1743–1753

    Article  Google Scholar 

  34. Manelis GB, Nazin GM, Rubtsov YI, Strunin VA (2003) Thermal decomposition and combustion of explosives and propellants. Taylor and Francis, London

    Google Scholar 

  35. Prokudin VG, Poplavsky VS, Ostrovskii VA (1996) Mechanism of the monomolecular thermal decomposition of 1,5- and 2,5-disubstituted tetrazoles. Russ Chem Bull 45(9):2094–2100

    Article  Google Scholar 

  36. Prokudin VG, Poplavsky VS, Ostrovskii VA (1996) Mechanism of the monomolecular thermal decomposition of tetrazole and 5-substituted tetrazoles. Russ Chem Bull 45(9):2101–2104

    Article  Google Scholar 

  37. Son SF, Berghout HL, Bolme CA, Chavez DE, Naud DL, Hiskey MA (2000) Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc Comb Inst 28:919–924

    Article  Google Scholar 

  38. Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV (2009) Mechanism of HMX combustion in a wide range of pressures. Comb Exp Shock Waves 45(4):461–477

    Article  Google Scholar 

  39. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP (2009) Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta 496(1):1–12

    Article  Google Scholar 

  40. Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA (2010) Combustion of energetic materials governed by reactions in the condensed phase. Int J Energy Mater Chem Prop 9(2):147–192

    Google Scholar 

  41. Lesnikovich AI, Ivachkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermal decomposition of aminotetrazoles. Thermochim Acta 388:233–251

    Article  Google Scholar 

  42. Sinditskii VP, Smirnov SP, Egorshev VY (2007) Thermal decomposition of NTO: explanation of high activation energy. Prop Exp Pyro 32(4):277–287

    Article  Google Scholar 

  43. Chavez DE, Hiskey MA (1998) Synthesis of the bi-heterocyclic parent ring system 1,2,4-triazolo[4,3-b][1,2,4,5]tetrazine and some 3,6-disubstituted derivatives. J Heterocycl Chem 35(6):1329–1332

    Article  Google Scholar 

  44. Rusinov GL, Ganebnykh IN, Chupakhin ON (1999) Synthesis of triazolo[4,3-b][1,2,4,5] tetrazines. Russ J Org Chem 35:1350–1354

    Google Scholar 

  45. Ershov VA, Postovskii IY (1971) Chemistry of sym-tetrazine. Chem Heterocycl Comp 7(5):668–671

    Article  Google Scholar 

  46. Huynh MHV, Hiskey MA, Chavez DE, Naud DL, Gilardi RD (2005) Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen C-N compound. J Am Chem Soc 127:12537–12543

    Article  Google Scholar 

  47. Hammerl A, Klapötke TM, Rocha R (2006) Azide–tetrazole ring-chain isomerism in polyazido-1,3,5-triazines, triazido-sheptazine, and diazidotetrazines. Eur J Inorg Chem: 11:2210–2228

    Google Scholar 

  48. Karpenko VO, Rudakov GF, Zhilin VF (2011) Synthesis of 6-amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine. Adv Chem Chem Technol (in Russian) 25(12):61–64

    Google Scholar 

  49. Kozlov IB, Karpenko VO, Rudakov GF, Zhilin VF (2012) Features azidotetrazole tautomerism in the salts of 6-(tetrazol-5-yl)tetrazole[1,5-b] -1,2,4,5-tetrazine. Adv Chem Chem Technol (in Russian) 26(2):109–111

    Google Scholar 

  50. Elguero J, Claramunt RM, Summers AJH (1978) The chemistry of aromatic azapentalenes. Adv Heterocycl Chem 22:183–320

    Article  Google Scholar 

  51. Licht HH, Ritter H (1994) New energetic materials from triazoles and tetrazines. J Energy Mater 12(4):223–235

    Article  Google Scholar 

  52. Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) DFT study on energetic tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J Hazard Mater 179:581–590

    Article  Google Scholar 

  53. Sinditskii VP, Burzhava AV, Rudakov GF, Zacharova DA (2015) Thermal decomposition of triazolo- and tetrazolotetrazines. In: Frolov SM (ed) Combustion and explosion. Torus Press, Moscow, pp 453–460

    Google Scholar 

  54. Rudakov GF, Egorshev VY (2014) Synthesis and properties of derivatives of 6-amino-tetrazolo[1,5-b][1,2,4,5]Tetrazine. Proceedings of the 9th international high energy materials conference, HEMSI. Thiruvananthapuram, pp 759–762

    Google Scholar 

  55. Henry RA, Finnegan WG, Lieber E (1955) Kinetics of the isomerization of substituted 5-aminotetrazoles. J Am Chem Soc 77(8):2264–2270

    Article  Google Scholar 

  56. Kim R, Pedersen S, Zewail FH (1995) Direct femtosecond observation of the transient intermediate in the α‐cleavage reaction of (CH3)2CO to 2CH3 + CO: resolving the issue of concertedness. J Chem Phys 103(1):477–480

    Article  Google Scholar 

  57. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A 113:9404–9412

    Article  Google Scholar 

  58. Ovchinnikov IV, Makhova NN (2008) Synthesis of 3-amino-6-nitro-1,2,4,5-tetrazine and its 2,4-dioxide. Proceedings of the 11th seminar of the new trends in research of energetic materials, Pardubice, 10–12 April. pp 713–718

    Google Scholar 

  59. Singh RP, Gao HX, Meshri DT, Shreeve JM (2007) Nitrogen-rich heterocycles. Struct Bond 125:35–83

    Article  Google Scholar 

  60. Xizeng Z, Ye T (1987) Synthesis and properties of tetrazine explosives, Proc Inter Sym on Pyro Exp. China Academic Publishers, Beijing, p 241

    Google Scholar 

  61. Sheremetev AB, Palysaeva NV, Struchkova MI (2010) The first synthesis of 3-nitro-4-[(s-tetrazin-3-yl)amino]furazans. Mendeleev Commun 20(6):350–352

    Article  Google Scholar 

  62. Chavez DE, Hiskey MA, Gilardi RD (2004) Novel high-nitrogen materials based on nitroguanyl-substituted tetrazines. Org Lett 6(17):2889–2891

    Article  Google Scholar 

  63. Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S (2005) New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Prop Exp Pyro 30(6):412–417

    Article  Google Scholar 

  64. Dorofeeva OV, Ryzhova ON, Sinditskii VP (2015) Enthalpy of formation of guanidine and its amino and nitro derivatives. Struct Chem 26(5–6):1629–1640

    Google Scholar 

  65. Matyushin YN, Kon’kova TS, Titova KV, Rosolovskii VY, Lebedev YA (1982) Enthalpies of formation of triaminoguanidinium chloride, nitrate, and perchlorate. Russ Chem Bull 31(3):446–449

    Article  Google Scholar 

  66. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11(Suppl. 2):1–392

    Google Scholar 

  67. Sinditskii VP, Hoang CH, Filatov SA, Rudakov GF (2012) Decomposition and combustion of polynitrogen energetic materials based on nitroguanyltetrazine. In: Frolov SM (ed) Combustion and explosion, vol 5. Torus Press, Moscow, pp 269–275

    Google Scholar 

  68. Tappan BC, Son SF, Ali AN, Chavez DE, Hiskey MA (2007) Decomposition and performance of new high nitrogen propellants and explosives. Int J Energy Mater Chem Prop 6(2):255–268

    Google Scholar 

  69. Lee PP, Back MH (1989) Thermal decomposition of nitroguanidine. Thermochim Acta 141:305–315

    Article  Google Scholar 

  70. Levshenkov AI, Akhapkina LE, Shebeko AA, Rudakov GF, Sinditskii VP (2011) Synthesis and combustion study of coordination compounds based on 1,2,4,5 tetrazine derivatives. In: Frolov SM (ed) Combustion and explosion, vol 4. Torus Press, Moscow, pp 298–303

    Google Scholar 

  71. Li ZM, Xie SH, Zhang JG, Feng JL, Wang K, Zhang TL (2012) Two high nitrogen content energetic compounds: 3, 6-diguanidino-1,2,4,5-tetrazine and its diperchlorate. J Chem Eng Data 57(3):729–736

    Article  Google Scholar 

  72. Klapötke TM, Preimesser A, Schedlbauer S, Stierstorfer J (2013) Highly energetic salts of 3,6-bishydrazino-1,2,4,5-tetrazine. Cent Eur J Energy Mater 10(2):151–170

    Google Scholar 

  73. Sinditskii VP, Serushkin VV, Egorshev VY, Rudakov GF, Filatov SA, Smirnov SP, Nguen BN (2012) Comparative study of combustion mechanism of guanidine salts: triaminoguanidine and 3,6-diguanidino-1,2,4,5-tetrazine nitrates. Proceedings of the 15th seminar of the new trends in research of energetic materials. Pardubice, 18–21 April, Part I. pp 271–279

    Google Scholar 

  74. Sinditskii VP, Egorshev VY, Dutova TY, Dutov MD, Zhang TL, Zhang JG (2011) Combustion of derivatives of 1,5-diaminotetrazole. Comb Exp Shock Waves 47(1):36–44

    Article  Google Scholar 

  75. Fogelzang AE, Sinditskii VP, Egorshev VY, Serushkin VV (1995) Effect of structure of energetic materials on burning rate. In: Decomposition, combustion and detonation chemistry of energetic materials. MRS Symp Proc 418, 27–30 Nov. Boston, pp 151–161

    Google Scholar 

  76. Serushkin VV, Sinditskii VP, Egorshev VY, Filatov SA (2013) Combustion mechanism of triaminoguanidine nitrate. Prop Exp Pyro 38(3):345–350

    Article  Google Scholar 

  77. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV (2005) Ammonium nitrate: combustion mechanism and the role of additives. Prop Exp Pyro 30(4):269–280

    Article  Google Scholar 

  78. Oxley JC, Smith JL, Naik S, Moran J (2009) Decompositions of urea and guanidine nitrates. JEnergy Mater 27:17–39

    Google Scholar 

  79. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA (2012) Combustion of energetic materials controlled by condensed-phase reactions. Comb Exp Shock Waves 48(1):81–99

    Article  Google Scholar 

  80. Kaim W (2002) The coordination chemistry of 1,2,4,5-tetrazines. Coord Chem Rev 230: 127–139

    Article  Google Scholar 

  81. Sinditskii VP, Fogelzang AE (1997) Design of explosive coordination compounds. Ross Khim Zh 41(4):74–80

    Google Scholar 

  82. Zhu SG, Wu YC, Zhang W, Mu JY (1997) Evaluation of a new primary explosive: nickel hydrazine nitrate (NHN) complex. Prop Exp Pyro 22(6):317–320

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by The Russian Science Foundation (grant no. 14-13-01153 to V.P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery P. Sinditskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sinditskii, V.P., Egorshev, V.Y., Rudakov, G.F., Filatov, S.A., Burzhava, A.V. (2017). High-Nitrogen Energetic Materials of 1,2,4,5-Tetrazine Family: Thermal and Combustion Behaviors. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics