Skip to main content

Nanotoxicology of Carbon-Based Nanomaterials

  • Chapter
  • First Online:

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Carbon-based nanomaterials are promising building blocks in a myriad of technological applications ranging from microprocessors to drug delivery. These expanding applications provided by the nanotechnological context will possibly result in a future exposure of human beings and environments to these carbon-based nanomaterials. In this new scenario, the perspectives of using carbon-based nanomaterials must be tightly linked with the development of a detailed understanding of their toxicity. The potential risks related to the production and application of carbon-related materials have been assessed in an increasing number of nanotoxicological studies on these nanostructures performed in the past fifteen years. Scientific community has been observing bioeffects manifested from the interactions between carbon nanostructures and biological entities organized in different levels of complexity, ranging from biomolecules to living organisms, but the large amount of data generated in these studies are still not integrated. In view of the necessity of integrating these results in the context of carbon nanostructures nanotoxicity, this chapter discusses significant toxicological assessments in the sense of enlightening possible biological effects manifested from the interaction of carbon-based nanomaterials and biological entities organized in different levels of complexity. The chapter covers results of in vitro and in vivo toxicological assessments of carbon nanostructures that show conditions in which these nanomaterials can be degraded by biological systems. Furthermore, we have introduced discussion not only on the different aspects of toxicity of these nanomaterials but also on the methodology used in each scenario. Finally, it is presented a properly correlation between the biological phenomena and the structural and morphological differences intrinsically present in carbon nanostructures that result from synthetic and processing variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  4. Van Noorden R (2011) The trials of new carbon. Nature 469:14–16

    Article  Google Scholar 

  5. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  6. Zhang YB, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  Google Scholar 

  7. Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum hall effect in graphene. Science 315:1379

    Article  Google Scholar 

  8. Qi XY, Pu KY, Li H et al (2010) Amphiphilic graphene composites. Angew Chem-Int Ed 49:9426–9429

    Article  Google Scholar 

  9. Huang X, Li SZ, Huang YZ et al (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292

    Article  Google Scholar 

  10. Huang X, Li SZ, Wu SX et al (2012) Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv Mater 24:979–983

    Article  Google Scholar 

  11. Qi XY, Pu KY, Zhou XZ et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6:663–669

    Article  Google Scholar 

  12. Huang X, Zhou XZ, Wu SX et al (2010) Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. Small 6:513–516

    Article  Google Scholar 

  13. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  Google Scholar 

  14. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Heidelberg

    Book  Google Scholar 

  15. Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  16. Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  Google Scholar 

  17. Li J, Ng HT, Cassell A et al (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3:597–602

    Article  Google Scholar 

  18. Liu Z, Sun XM, Nakayama-Ratchford N et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  Google Scholar 

  19. Chen J, Du D, Yan F et al (2005) Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode. Chem Eur J 11:1467–1472

    Article  Google Scholar 

  20. Pumera M (2009) Electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970–4978

    Article  Google Scholar 

  21. De Heer WA, Chatelain A, Ugarte D (1992) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  22. Perea-López N, Rebollo-Plata B, Briones-León JA et al (2011) Millimeter-long carbon nanotubes: outstanding electron-emitting sources. ACS Nano 5:5072–5077

    Article  Google Scholar 

  23. Gitsov I, Simonyan A, Wang L et al (2012) Polymer-assisted biocatalysis: unprecedented enzymatic oxidation of fullerene in aqueous medium. J Polym Sci, Part A: Polym Chem 50:119–126

    Article  Google Scholar 

  24. Nielsen GD, Roursgaard M, Jensen KA et al (2008) In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103:197–208

    Article  Google Scholar 

  25. Gilbert SG (2004) A small dose of toxicology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  26. Borzelleca JF (2000) Paracelsus: herald of modern toxicology. Toxicol Sci 53:2–4

    Article  Google Scholar 

  27. Rozman KK, Doull J (2001) Paracelsus, Haber and Arndt. Toxicology 160:191–196

    Article  Google Scholar 

  28. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  29. Da J (2000) The surface activity of ultrafine particles. Philos Trans R Soc London Ser A Math Phys Eng Sci 358:2683–2692

    Article  Google Scholar 

  30. World Health Organization (2010) Preventing disease through healthy environments. World Health Organization, Geneva

    Google Scholar 

  31. Künzli N, Kaiser R, Medina S et al (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356:795–801

    Article  Google Scholar 

  32. Künzli N, Jerrett M, Mack WJ et al (2004) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206

    Article  Google Scholar 

  33. Wichmann H, Peters A (2000) Epidemiological evidence of the effects of ultrafine particle exposure. Philos Trans R Soc London, Ser A Math Phys Eng Sci 358:2751–2769

    Article  Google Scholar 

  34. Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39:405–410

    Google Scholar 

  35. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  Google Scholar 

  36. Gurr J-R, Wang ASS, Chen C-H et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    Article  Google Scholar 

  37. Xia T, Kovochich M, Brant J et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  Google Scholar 

  38. Takenaka S, Karg E, Roth C et al (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(4):547–551

    Article  Google Scholar 

  39. Churg A, Stevens B, Wright JL (1998) Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system. Am J Physiol 274:L81–L86

    Google Scholar 

  40. Lippmann M (1990) Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311–317

    Article  Google Scholar 

  41. Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  Google Scholar 

  42. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  Google Scholar 

  43. Oberdörster G (2002) Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56

    Article  Google Scholar 

  44. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12

    Article  Google Scholar 

  45. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  Google Scholar 

  46. Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  Google Scholar 

  47. Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  Google Scholar 

  48. Lam C-W, James JT, McCluskey R et al (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  49. Cui D, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  Google Scholar 

  50. Paula AJ, Stefani D, Souza Filho AG et al (2011) Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds. Chemistry 17:3228–3237

    Article  Google Scholar 

  51. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  52. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182–10188

    Article  Google Scholar 

  53. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  Google Scholar 

  54. Bottini M, Bruckner S, Nika K et al (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  Google Scholar 

  55. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  Google Scholar 

  56. Cherukuri P, Bachilo SM, Litovsky SH et al (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–15639

    Article  Google Scholar 

  57. Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice 289:L698–L708

    Google Scholar 

  58. Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826

    Article  Google Scholar 

  59. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    Article  Google Scholar 

  60. Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592:119–137

    Article  Google Scholar 

  61. Sayes CM, Fortner JD, Guo W et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    Article  Google Scholar 

  62. Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  Google Scholar 

  63. Monopoli MP, Bombelli FB, Dawson KA (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6:11–12

    Article  Google Scholar 

  64. Monopoli MP, Walczyk D, Campbell A et al (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  Google Scholar 

  65. Walczyk D, Bombelli FB, Monopoli MP et al (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768

    Article  Google Scholar 

  66. Razzaboni BLL, Bolsaitis P (1990) Evidence of an oxidative mechanism for the hemolytic-activity of silica particles. Environ Health Perspect 87:337–341

    Article  Google Scholar 

  67. Nash T, Allison AC, Harington JS (1966) Physico-chemical properties of silica in relation to its toxicity. Nature 210:259–261

    Article  Google Scholar 

  68. Trewyn BG, Zhao YN, Sun XX et al (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–1375

    Article  Google Scholar 

  69. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728

    Article  Google Scholar 

  70. Paula AJ, Filho AGS, Alves OL (2012) Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: independence of the surface microchemical environment. J Braz Chem Soc 23:1807–1814

    Article  Google Scholar 

  71. Fohlman JFG (1993) Is juvenile diabetes a viral disease? Ann Med 25:569–574

    Google Scholar 

  72. Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389

    Article  Google Scholar 

  73. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955

    Article  Google Scholar 

  74. Monopoli MP, Aberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  Google Scholar 

  75. Davey G, Gebrehanna E, Adeyemo A et al (2007) Podoconiosis: a tropical model for gene-environment interactions? Trans R Soc Trop Med Hyg 101:91–96

    Article  Google Scholar 

  76. Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environ Toxicol Chem 31:60–72

    Article  Google Scholar 

  77. Umbuzeiro GA, Coluci VR, Honório JG et al (2011) Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. TrAC Trends Anal Chem 30:437–446

    Article  Google Scholar 

  78. Stefani D, Paula AJ, Vaz BG et al (2011) Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. J Hazard Mater 189:391–396

    Article  Google Scholar 

  79. Seabra AB, Paula AJ, Durán N (2013) Redox-enzymes, cells and micro-organisms acting on carbon nanostructures transformation: a mini-review. Biotechnol Prog 29:1–10

    Article  Google Scholar 

  80. Seabra AB, Paula AJ, de Lima R et al (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168

    Article  Google Scholar 

  81. Allen BL, Kichambare PD, Gou P et al (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–3903

    Article  Google Scholar 

  82. Allen BL, Kotchey GP, Chen Y et al (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131:17194–17205

    Article  Google Scholar 

  83. Vlasova II, Vakhrusheva TV, Sokolov AV et al (2011) Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes. J Phys: Conf Ser 291:12–56

    Google Scholar 

  84. Vlasova II, Sokolov AV, Chekanov AV et al (2011) Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite. Russ J Bioorganic Chem 37:453–463

    Article  Google Scholar 

  85. Zhao Y, Allen BL, Star A (2011) Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115:9536–9544

    Article  Google Scholar 

  86. Russier J, Ménard-Moyon C, Venturelli E et al (2011) Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale 3:893–896

    Article  Google Scholar 

  87. Kagan VE, Konduru NV, Feng W et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    Article  Google Scholar 

  88. Konduru NV, Tyurina YY, Feng W et al (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS ONE 4:e4398

    Article  Google Scholar 

  89. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20

    Article  Google Scholar 

  90. Liu X, Hurt RH, Kane AB (2010) Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon 48:1961–1969

    Article  Google Scholar 

  91. Neves V, Heister E, Costa S et al (2010) Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv Funct Mater 20:3272–3279

    Article  Google Scholar 

  92. Lacerda L, Russier J, Pastorin G et al (2012) Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33:3334–3343

    Article  Google Scholar 

  93. Dong PX, Wan B, Wang ZX et al (2013) Exposure of single-walled carbon nanotubes impairs the functions of primarily cultured murine peritoneal macrophages. Nanotoxicology 7:1028–1042

    Article  Google Scholar 

  94. Jin H, Heller DA, Sharma R et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    Article  Google Scholar 

  95. Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  Google Scholar 

  96. Kotchey GP, Allen BL, Vedala H et al (2011) The enzymatic oxidation of graphene oxide. ACS Nano 5:2098–2108

    Article  Google Scholar 

  97. Salas EC, Sun Z, Lu A et al (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    Article  Google Scholar 

  98. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  99. Kuila T, Bose S, Khanra P et al (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921

    Article  Google Scholar 

  100. Vallabani NVS, Mittal S, Shukla RK et al (2011) Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol 7:106–107

    Article  Google Scholar 

  101. Zhang L, Xia J, Zhao Q et al (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  Google Scholar 

  102. Yuan J, Gao H, Ching CB (2011) Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol Lett 207:213–221

    Article  Google Scholar 

  103. Zhang Y, Ali SF, Dervishi E et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186

    Article  Google Scholar 

  104. Yan L, Zhao F, Li S et al (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3:362–382

    Article  Google Scholar 

  105. Schinwald A, Murphy FA, Jones A et al (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746

    Article  Google Scholar 

  106. Liu Z, Robinson JT, Sun X et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  Google Scholar 

  107. Yue H, Wei W, Yue Z et al (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33:4013–4021

    Article  Google Scholar 

  108. Nudejima S, Miyazawa K, Okuda-Shimazaki J et al (2009) Observation of phagocytosis of fullerene nanowhiskers by PMA-treated THP-1 cells. J Phys: Conf Ser 159:012008

    Google Scholar 

  109. Okuda-Shimazaki J, Nudejima S, Takaku S et al (2010) Effects of fullerene nanowhiskers on cytotoxicity and gene expression. Health 2:1456–1459

    Article  Google Scholar 

  110. Porter AE, Muller K, Skepper J et al (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:409–419

    Article  Google Scholar 

  111. Marques-Rocha FJ, Hernandez-Rodriguez VZ, Vazquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472

    Article  Google Scholar 

  112. Chen YR, Sarkanen SWY (2012) Lignin-degrading enzyme activities. Methods Mol Biol 908:251–268

    Google Scholar 

  113. Schreiner KM, Filley TR, Blanchette RA et al (2009) White-rot basidiomycete-mediated decomposition of C60 fullerol. Env Sci Technol 43:3162–3168

    Article  Google Scholar 

  114. Zhao F, Zhao Y, Liu Y et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    Article  Google Scholar 

  115. Fisher C, Rider AE, Han ZJ et al (2012) Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomater 2012:1–19

    Article  Google Scholar 

  116. Shvedova AA, Kapralov AA, Feng WH et al (2012) Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS ONE 7:e30923–e30923

    Article  Google Scholar 

  117. Fraczek A, Menaszek E, Paluszkiewicz C et al (2008) Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602

    Article  Google Scholar 

  118. Nunes A, Bussy C, Gherardini L et al (2012) In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine 7:1485–1494

    Article  Google Scholar 

  119. Takagi A, Hirose A, Nishimura T et al (2008) Induction of mesothelioma in p53±mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  Google Scholar 

  120. Gharbi N, Pressac M, Hadchouel M et al (2005) Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  Google Scholar 

  121. Wang K, Ruan J, Song H et al (2010) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:8

    Google Scholar 

  122. Duch MC, Budinger GRS, Liang YT et al (2011) Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett 11:5201–5207

    Article  Google Scholar 

  123. Zhang S, Yang K, Feng L et al (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040–4049

    Article  Google Scholar 

  124. Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  Google Scholar 

  125. Sahu A, Choi WI, Tae G (2012) A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem Commun 48:5820–5822

    Article  Google Scholar 

  126. Yang K, Gong H, Shi X et al (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795

    Article  Google Scholar 

  127. Dumortier H, Lacotte S, Pastorin G et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  Google Scholar 

  128. Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  Google Scholar 

  129. Fadeel B, Shvedova AA, Kagan VE (2011) Interactions of carbon nanotubes with the immune system: focus on mechanisms of internalization and biodegradation. In: Alexiou C (ed) Nanomedicine—basic and clinical applications in diagnostics and therapy, 1st edn. Karger, Basel, pp 80–87

    Google Scholar 

  130. Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5:7640–7647

    Article  Google Scholar 

  131. Roebben G, Ramirez-Garcia S, Hackley VA et al (2011) Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanoparticle Res 13:2675–2687

    Article  Google Scholar 

  132. Duran N, Martinez DST, Justo GS, et al (2015) Interlab study on nanotoxicology of representative graphene oxide. J Phys Conf Ser 617:01201–9

    Google Scholar 

  133. Duran, N, Guterres SS, Alves OL (2014) Nanotoxicology: materials, methodologies, and assessments. Springer, pp 412 ISBN 978-1-4614-8992-4

    Google Scholar 

Download references

Acknowledgment

A.J.P. acknowledges CNPq grant no. 446800/2014-7, as well as UFC and FUNCAP scholarships for students. G.C.P. acknowledges CNPq/FUNCAP through DCR grant no. 0024.00898.01.00/13. N.D. acknowledges FAPESP, CNPq, INOMAT (MCTI/CNPq), Brazilian Network on Nanotoxicology (MCTI/CNPq) and NanoBioss (SisNano/MCTI). A.G.S.F. acknowledges CNPq (grant no. 307317/2010-2 and INCT NanoBioSimes) and FUNCAP through PRONEX (grant no. PR2-0054-00022.01.00/11). We also thank Dr. Diego Stéfani Teodoro Martinez for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Gomes Souza Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Paula, A.J., Padovani, G.C., Duran, N., Souza Filho, A.G. (2016). Nanotoxicology of Carbon-Based Nanomaterials. In: Jorio, A. (eds) Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-25907-9_7

Download citation

Publish with us

Policies and ethics