Skip to main content

Advances in Light Field Imaging for Measurement of Fluid Mechanical Systems

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

Abstract

Light field imaging is becoming an increasingly useful tool for measuring fluid mechanical systems. We present advances in light field imaging for fluids along three directions. The first concerns robust reconstruction of fluid measurement volumes using synthetic aperture refocusing followed by deconvolution. Then, we discuss how a flame, which distorts the refractive index, augments the light field. The error introduced into particle image velocimetry measurements by this effect is discussed. Finally, we develop a framework for the application of light field imaging to the reconstruction of a specular gas-liquid interface.

The rights in this work are transferred to the extent transferable according to title 17 U.S.C. 105

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levoy, M.: Light fields and computational imaging. IEEE Comput. 39(8), 46–55 (2006)

    Article  Google Scholar 

  2. Scarano, F.: Tomographic piv: principles and practice. Meas. Sci. Technol. 24(1), 012001 (2013)

    Article  Google Scholar 

  3. Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  4. Belden, J., Truscott, T.T., Axiak, M., Techet, A.H.: Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21(12), 125403 (2010)

    Article  Google Scholar 

  5. Pereira, F., Gharib, M., Dabiri, D., Modarress, D.: Defocusing digital particle image velocimetry: a 3-component 3-dimensional dpiv measurement technique. application to bubbly flows. Exp. Fluids 29(1), S078–S084 (2000)

    Google Scholar 

  6. Lynch, K., Fahringer, T., Thurow, B.: Three-dimensional particle image velocimetry using a plenoptic camera. In: American Institute of Aeronautics and Astronautics, Reston, VA, Conference Proceedings published by Curran Associates Inc Red Hook, New York, NY pp. 9–12. January 2012

    Google Scholar 

  7. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Trans. Graph. (TOG) 24, 765–776 (2005)

    Article  Google Scholar 

  8. Vaish, V., Garg, G., Talvala, E., Antunez, E., Wilburn, B.,. Horowitz, M., Levoy, M.: Synthetic aperture focusing using a shear-warp factorization of the viewing transform. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops, pp. 129–129. IEEE (2005)

    Google Scholar 

  9. Jesse, B., Sai, R., Truscott, T.T., Techet, A.H.: Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet. Exp. Fluids 53(3), 839–861 (2012)

    Google Scholar 

  10. Sibarita, J.B.: Deconvolution microscopy. In: Rietdorf, J. (ed.) Microscopy Techniques, Advances in Biochemical Engineering/Biotechnology, vol. 95, pp. 1288–1291. Springer, Heidelberg (2005). doi:10.1007/b102215

    Chapter  Google Scholar 

  11. Levoy, M., Ng, R., Adams, A., Footer, M., Horowitz, M.: Light field microscopy. ACM Trans. Graph. (TOG) 25(3), 924–934 (2006)

    Article  Google Scholar 

  12. Adhikari, D., Longmire, E.K.: Visual hull method for tomographic piv measurement of flow around moving objects. Exp. Fluids 53(4), 943–964 (2012)

    Article  Google Scholar 

  13. Shimura, M., Ueda, T., Choi, G.-M., Tanahashi, M., Miyauchi, T.: Simultaneous dual-plane CH PLIF, single-plane OH PLIF and dual-plane stereoscopic PIV measurements in methane-air turbulent premixed flames. Proc. Combust. Inst. 33(1), 775–782 (2011)

    Article  Google Scholar 

  14. Boxx, I., Sthr, M., Carter, C., Meier, W.: Sustained multi-khz flamefront and 3-component velocity-field measurements for the study of turbulent flames. Appl. Phys. B 95(1), 23–29 (2009)

    Article  Google Scholar 

  15. Filatyev, S., Thariyan, M., Lucht, R., Gore, J.: Simultaneous stereo particle image velocimetry and double-pulsed planar laser-induced fluorescence of turbulent premixed flames. Combust. Flame 150(3), 201–209 (2007)

    Article  Google Scholar 

  16. Tanahashi, M., Murakami, S., Choi, G.-M., Fukuchi, Y., Miyauchi, T.: Simultaneous CH-OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc. Combust. Inst. 30(1), 1665–1672 (2005)

    Article  Google Scholar 

  17. Treibitz, T., Schechner, Y.Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 51–65 (2012)

    Article  Google Scholar 

  18. Belden, J.: Calibration of multi-camera systems with refractive interfaces. Exp. Fluids 54(2), 1–18 (2013). doi:10.1007/s00348-013-1463-0

    Article  Google Scholar 

  19. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., Seidel, H.P.: Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27(5), 132 (2009)

    Google Scholar 

  20. Lanman, D., Taubin, G.: Build your own 3d scanner: 3d photography for beginners. In: ACM SIGGRAPH 2009 Courses, p. 8. ACM (2009)

    Google Scholar 

  21. Bonfort, T., Sturm, P.: Voxel carving for specular surfaces. In: Proceedings of the Ninth IEEE International Conference on Computer Vision 2003, pp. 591–596. IEEE, (2003)

    Google Scholar 

  22. Ding, Y., Li, F., Ji, Y., Yu, J.: Dynamic fluid surface acquisition using a camera array. In: IEEE International Conference on Computer Vision (ICCV) 2011, pp. 2478–2485. IEEE (2011)

    Google Scholar 

  23. Bonfort, T., Sturm, P., Gargallo, P.: General Specular Surface Triangulation. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 872–881. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Savarese, S., Chen, M., Perona, P.: Local shape from mirror reflections. Int. J. Comput. Vis. 64(1), 31–67 (2005)

    Article  Google Scholar 

  25. Ding, Y., Yu, J., Sturm, P.: Recovering specular surfaces using curved line images. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR 2009, pp. 2326–2333. IEEE (2009)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Office of Naval Research under task number N0001413WX20545 monitored by program officer Dr. Ronald Joslin (ONR Code 331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Belden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 US Government (outside the US)

About this paper

Cite this paper

Belden, J., Pendlebury, J., Jafek, A., Truscott, T. (2015). Advances in Light Field Imaging for Measurement of Fluid Mechanical Systems. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics