Skip to main content

Using Sensory Substitution of Median Sensory Deficits in the Traumatized Hand to Develop an Innovative Home-Based Hand Rehabilitation System

  • Conference paper
  • First Online:
  • 2966 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9102))

Abstract

Post-traumatic median nerve sensitive deficits are frequent. They are a source of permanent handicap that dramatically decreases the level of autonomy and the quality of life of persons suffering from these deficits. Surgical repair is possible, but the results are not always functionally useful. Therefore, prosthetic approaches do represent an alternative solution that needs to be explored. Along these lines, this paper describes an innovative home-basedhand rehabilitation systemdevice that exploits sensory substitution of median sensory deficits in the traumatized hand. It is composed of a glove bearing smart textile pressure sensors and a wristband providing vibratory biofeedback to the user. The goal of this sensory-substitution system is to provide for patients an effective method to compensate the lack of sensitivity of the finger pads and to recover a functional hand use. This innovative system is intended to be employed for assessment, training and rehabilitation exercises at home.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Livre Blanc de la FESUM (1998). http://www.gem-sfcm.org

  2. Bach-y-Rita, P.: Sensory substitution and the human-machine interface. Trends Cogn. Sci. (Regul. Ed.) 7(12), 541–546 (2003)

    Article  Google Scholar 

  3. Chenu, O., Vuillerme, N., Demongeot, J., Payan, Y.: A wireless lingual feedback device to reduce overpressures in seated posture: a feasibility study. PLoS One 4(10), e7550 (2009)

    Article  Google Scholar 

  4. Vuillerme, N., et al.: Sensory supplementation system based on electrotactile tongue biofeedback of head position for balance control. Neurosci. Lett. 431(3), 206–210 (2008)

    Article  Google Scholar 

  5. Robineau, F., Boy, F., Orliaguet, J.P., Demongeot, J., Payan, Y.: Guiding the surgical gesture using an electro-tactile stimulus array on the tongue: a feasibility study. IEEE Trans. Biomed. Eng. 54(4), 711–717 (2007)

    Article  Google Scholar 

  6. Chenu, O., Vuillerme, N., Bucki, M., Diot, B., Cannard, F., Payan, Y.: TexiCare: An innovative embedded device for pressure ulcer prevention. Preliminary results with a paraplegic volunteer. J. Tissue Viability 22, 83–90 (2013)

    Article  Google Scholar 

  7. Najeb, Y., Trafeh, M.: Résultats de la réparation primaire des plaies du nerf médian et du nerf ulnaire au poignet. Chir Main (2009)

    Google Scholar 

  8. Lenoble, E., Vilain, R.: Résultats de la réparation primaire de vingt- huit plaies isolées du nerf médian au poignet. Ann Chir Main 8(4), 347–351 (1989)

    Article  Google Scholar 

  9. Witney, A., et al.: The cutaneous contribution to adaptive precision grip. Trends Neurosci. 27(10), 637–643 (2004)

    Article  Google Scholar 

  10. Dun, S., et al.: Lower median nerve block impairs precision grip. J. Electromyogr. Kinesiol. 17(3), 348–354 (2007)

    Article  Google Scholar 

  11. Schenker, M., et al.: Precision grip function after hand replantation and digital nerve injury. J. Plast. Reconstr. Aesthet. Surg. 59(7), 706–716 (2006)

    Article  Google Scholar 

  12. Li, Z.M., Nimbarte, A.D.: Peripheral median nerve block impairs precision pinch movement. Clin. Neurophysiol. 117(9), 1941–1948 (2006)

    Article  Google Scholar 

  13. Monzée, J., et al.: The effects of digital anesthesia on force control using a precision grip. J. Neurophysiol. 89(2), 672–683 (2003)

    Article  Google Scholar 

  14. Augurelle, A.S., et al.: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89(2), 665–671 (2003)

    Article  Google Scholar 

  15. Hermsdörfer, D.A., et al.: Grip force control during object manipulation in cerebral stroke. Clin. Neurophysiol. 114(5), 915–929 (2003)

    Article  Google Scholar 

  16. Nowak, D.A., Hermsdörfer, D.A.: Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits. Neurosci. Res. 47(1), 65–72 (2003)

    Article  Google Scholar 

  17. Nowak, D.A., et al.: Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility? Clin. Neurophysiol. 114(3), 472–487 (2003)

    Article  Google Scholar 

  18. Bach-y-Rita, P., et al.: Vision substitution by tactile image projection. Nature 221, 963–964 (1969)

    Article  Google Scholar 

  19. Massimino, M.J.: Improved force perception through sensory substitution. Control Eng. Pract. 3(2), 215–222 (1995)

    Article  Google Scholar 

  20. Visell, Y.: Tactile sensory substitution: Models for enaction in HCI. Interact. Comput. 21(1–2), 38–53 (2009)

    Article  Google Scholar 

  21. Lederman, S.J., Browse, R.A.: The physiology and psychophysics of touch. Sensors and sensory systems for advanced robots. NATO ASI Series 43, 71–91 (1988)

    Google Scholar 

  22. Spicher, C.: Manuel de rééducation sensitive du corps humain. Médecine & Hygiène, Geneva (2003)

    Google Scholar 

  23. Whitaker, T.A., et al.: Vision and touch: Independent or integrated systems for the perception of texture? Brain Res. 1242(C), 59–729 (2008)

    Article  Google Scholar 

  24. Sourceforge. http://sourceforge.net/projects/zedgraph

  25. Bell-Krotoski, J.: The repeteability of testing with Semmes-Weinstein monofilaments. J. Hand Surg. (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Semere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Semere, A., Payan, Y., Cannard, F., Diot, B., Vuillerme, N. (2015). Using Sensory Substitution of Median Sensory Deficits in the Traumatized Hand to Develop an Innovative Home-Based Hand Rehabilitation System. In: Geissbühler, A., Demongeot, J., Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds) Inclusive Smart Cities and e-Health. ICOST 2015. Lecture Notes in Computer Science(), vol 9102. Springer, Cham. https://doi.org/10.1007/978-3-319-19312-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19312-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19311-3

  • Online ISBN: 978-3-319-19312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics