Skip to main content

Chemical Evolution in the Earth’s Mantle and Its Explanation Based on Piezonuclear Fission Reactions

  • Chapter
Book cover Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes

Abstract

The anomalous chemical balances at the major events in the geomechanical and geochemical evolution of the Earth’s crust should be considered as indirect evidences of piezonuclear fission reactions. Recent results observed at the scale of the Earth’s crust and reproduced at the scale of the laboratory during quasi-static and repeated loading experiments may be extended to the different layers of the planet like the atmosphere and the bulk Earth (mantle and external core). The mantle of our planet is characterized by very high pressures and temperatures (~150 GPa and ~4000 °C) that could favour this kind of reactions. In the present paper, it is shown that the most important chemical changes in the Earth’s crust evolution may be recognized also at the internal Earth’s layers. Recent investigations have shown that also the mantle is characterized by significant compositional time variations. This evolution may be interpreted in the light of the same nuclear reactions recently proposed to explain the chemical changes in the Earth’s continental crust and atmosphere through the entire life of our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao HR, Hemley J (2007) The high-pressure dimension in earth and planetary science. Proc Natl Acad Sci USA 104:914–915

    Article  Google Scholar 

  2. Anbar AD (2008) Elements and evolution. Science 322:1481–1482

    Article  Google Scholar 

  3. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  4. Saito MA (2009) Less nickel for more oxygen. Nature 458:714–715

    Article  Google Scholar 

  5. Konhauser KO et al (2009) Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature 458:750–754

    Article  Google Scholar 

  6. Favero G, Jobstraibizer P (1996) The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coord Chem Rev 149:367–400

    Article  Google Scholar 

  7. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  8. Carpinteri A, Manuello A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain 47:282–292

    Article  Google Scholar 

  9. Carpinteri A, Manuello A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earth’s crust. Phys Mesomech 15:14–23

    Article  Google Scholar 

  10. Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests: ,monotic vs. cyclic loading. Phys Mesomech 13:264–274

    Article  Google Scholar 

  11. Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strength Fract Complex 7:13–31

    Google Scholar 

  12. Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45:445–459

    Article  Google Scholar 

  13. Carpinteri A, Lacidogna G, Manuello A, Borla O (2013) Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp Mech 53(3):345–365

    Article  Google Scholar 

  14. Cardone F, Carpinteri A, Lacidogna G (2009) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163

    Article  Google Scholar 

  15. Carpinteri A, Cardone F, Lacidogna G (2009) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243

    Article  Google Scholar 

  16. Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332–339, Atti dell’Accademia delle Scienze di Torino, Torino, Italy, 33:27–42

    Article  Google Scholar 

  17. Liu L (2004) The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Article  Google Scholar 

  18. CRC Handbook of Chemistry and Physics (1980) Robert C. Weast (ed). CRC Press, New York, F-199

    Google Scholar 

  19. Garrison TS (2005) Oceanography: an invitation to marine science. Thompson Brooks Cole, Belmont

    Google Scholar 

  20. Schopf J (1983) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton

    Google Scholar 

  21. Kolb E (2000) Blind watchers of the sky: the people and ideas that shaped our view of the universe. Oxford University Press, Oxford

    Google Scholar 

  22. Kolb E, Matarrese S, Notari S, Riotto A (2005) Primordial inflation explains why the Universe is accelerating today. arXiv:hep-th/0503117v1, 1–4

    Google Scholar 

  23. Williams RP, Da Silva FJR (2003) Evolution was chemically constrained. J Theor Biol 220:323–343

    Article  Google Scholar 

  24. Buesseler KO, Doney SC, Karl DM et al (2008) Ocean iron fertilization moving forward in a sea of uncertainty. Science 319:162

    Article  Google Scholar 

  25. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond Ser B 361:903–915

    Article  Google Scholar 

  26. Abbott DH, Burgess L, Longhi J, Smith WHF (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99(13):835–850

    Google Scholar 

  27. Vovna GM, Mishkin MA, Sakhno VG, Zarubina NV (2009) Early archean sialic crust of the Siberian craton: its composition and origin of magmatic protoliths. Dokl Earth Sci 429(2):1439–1442

    Article  Google Scholar 

  28. The World Ocean (2007) The Columbia encyclopedia. CD-ROM, 6th edn. Columbia University Press, New York

    Google Scholar 

  29. Van Nostrands Scientific Encyclopedia (2008) Ocean volume and depth, 10th edn. Van Nostrands Scientific Encyclopedia, New York

    Google Scholar 

  30. (1994) The concise Columbia electronic encyclopedia, 3rd edn. Columbia University Press, New York

    Google Scholar 

  31. Kasting JF, Ackerman TP (1986) Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 234:1383–1385

    Article  Google Scholar 

  32. Yung YL, De More WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, New York

    Google Scholar 

  33. Ronov AB, Yaroshevsky AA (1978) The chemical composition of Earth’s crust and its shells. In: Tectonosphere of Earth. Nedra, Moscow, pp 376–402

    Google Scholar 

  34. Catling CD, Zahnle KJ (2009) The planetary air leak. Sci Am 300:24–31

    Article  Google Scholar 

  35. Royer DL, Berner RA, Montanez IP, Tabor NJ, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:4–10

    Article  Google Scholar 

  36. Berner RA (1990) Atmospheric carbon dioxide levels over Phanerozoic time. Science 249:1382–1386

    Article  Google Scholar 

  37. Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    Article  Google Scholar 

  38. Bergman RA, Noam M, Timothy ML, Watson AJ (2004) Copse: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 301:182–204

    Google Scholar 

  39. Rothman DH (2001) Atmospheric carbon dioxide levels for the last 500 million years. Proc Natl Acad Sci USA 99:4167–4171

    Article  Google Scholar 

  40. Fischer H, Wahlen M, Smith J, Mastroianni D, Deck B (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283:1712–1714

    Article  Google Scholar 

  41. Monnin E, Steig EJ, Siegenthaler U et al (2004) Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet Sci Lett 224:45–54

    Article  Google Scholar 

  42. Townsend A, Howarth RW (2010) Fixing the global nitrogen problem. Sci Am 302:50–57

    Article  Google Scholar 

  43. Aki K (1983) Strong motion seismology. In: Kanamori H, Boschi E (eds) Earthquakes: observation, theory and interpretation. North-Holland Pub Co, Amsterdam, pp 223–250

    Google Scholar 

  44. Sorokhtin OG et al (2007) Global warming and global cooling – evolution of climate on Earth. Elsevier, Amsterdam

    Book  Google Scholar 

  45. Ahrens TJ (1971) The state of mantle minerals. Technophysics. XX:189–219

    Google Scholar 

  46. Wang L et al (2010) Nanoprobe measurements of materials at megabar pressures. Proc Natl Acad Sci USA 107(14):6140–6145

    Article  Google Scholar 

  47. Rngwood AE (1962) The chemical composition and the origin of Earth. In: Hurley PM (ed) Advance in earth science. MIT PRESS, Cambridge

    Google Scholar 

  48. Urey HC, Craig H (1953) The composition of the stone meteorites and the origin of the meteorites. Geochim Cosmochim Acta 4(1–2):36–82

    Article  Google Scholar 

  49. Rees M (2005) Universe – the definitive visual guide. Dorling Kindersley Ltd, NewYork

    Google Scholar 

  50. Lenton TM, Schellnhuber HJ, Szathmáry E (2004) Climbing the co-evolution ladder. Nature 431(7011):913

    Article  Google Scholar 

  51. Goldblatt C, Lenton TM, Watson AJ (2006) The great oxidation at 2.4 Ga as a bistability in atmospheric oxygen due to UV shielding by ozone. Geophys Res Abstr 8:00770

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Carpinteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carpinteri, A., Manuello, A., Negri, L. (2015). Chemical Evolution in the Earth’s Mantle and Its Explanation Based on Piezonuclear Fission Reactions. In: Carpinteri, A., Lacidogna, G., Manuello, A. (eds) Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes. Springer, Cham. https://doi.org/10.1007/978-3-319-16955-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16955-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16954-5

  • Online ISBN: 978-3-319-16955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics