Skip to main content

Ocean Wave Energy Conversion Concepts

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

The purpose of this chapter is to present the basic concepts of ocean wave energy conversion as an extension to the supporting subjects presented earlier in this handbook so that they can be useful to scientists, engineers and inventors. Although new research regarding all wave energy conversion aspects has been unveiling continuously over the past few decades and is expected to remain so in the foreseeable future, they are based on only a few fundamental wave energy conversion techniques. These methods are described and their uses and performance are illustrated. Finally, an account of several recent developments and advances in ocean wave energy research is presented as an appendix with an emphasis to commercialization of different technologies in conjunction with their financial viability, techno-economic, and environmental impact.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AWS:

Archimedes wave swing

HMI:

human–machine interface

LIMPET:

land-installed marine power energy transmitter

OTEC:

ocean thermal energy conversion

OWC:

oscillating water column

OWSC:

oscillating wave surge converter

SCADA:

supervisory control and data acquisition system

UPS:

uninterruptable power supply

VFD:

variable frequency drive

vi:

virtual instrument

WECA:

wave energy conversion actuator

WEC:

wave energy conversion

References

  • J. Grimwade, D. Hails, E. Robles, F. Salcedo, J. Bard, P. Kracht, J.-B. Richard, D. Schledde, A.R. Årdal, J.I. Marvik, N.A. Ringheim, H. Svendsen, M. Molinas: D2.03 Review of Relevant PTO Systems, Tech. Rep., MARINET (2012) http://www.fp7-marinet.eu/public/docs/D2.03_Review_of_relevant_PTO_systems.pdf

  • A.F.O. Falcão: Wave energy utilization: A review of the technologies, Renew. Sustain. Energy Rev. 14(3), 899–918 (2010)

    Article  Google Scholar 

  • B. Drew, A.R. Plummer, M.N. Sahinkaya: A review of wave energy converter technology, Proc. IMechE A: J. Power Energy 223, 887–902 (2009)

    Article  Google Scholar 

  • R.W. Yeung, A. Peiffer, N. Tom, T. Matlak: Design, analysis, and evaluation of the UC-Berkeley wave-energy extractor, Proc. ASME 29th Int. Conf. Ocean, Offshore Arct. Eng. (OMAE), Shanghai (2010)

    Google Scholar 

  • J. Falnes: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction (Cambridge Univ. Press, Cambridge 2002)

    Book  Google Scholar 

  • S.H. Salter, D. Jeffrey, J. Taylor: The architecture of nodding duck wave power generators, The Naval Architect Jan, 21–24 (1976)

    Google Scholar 

  • J. Falnes: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction (Cambridge Univ. Press, Cambridge 2004)

    Google Scholar 

  • J.N. Newman: The exciting forces on bodies in waves, J. Ship Res. 6(3), 10–17 (1962)

    Google Scholar 

  • K. Budal, J. Falnes: A resonant point absorber of ocean waves, Nature 256, 478–479 (1975)

    Article  Google Scholar 

  • D.V. Evans: A theory for wave-power absorption by oscillating bodies, J. Fluid Mech. 77, 1–25 (1976)

    Article  MATH  Google Scholar 

  • J.N. Newman: The interaction of stationary vessels with regular waves, Proc. 11th Symp. Naval Hydrodyn. (Mechanical Engineering Publications, London 1976) pp. 491–501

    Google Scholar 

  • K. Budal: Theory for absorption of wave power by a system of interacting bodies, J. Ship Res. 21, 248–253 (1977)

    Google Scholar 

  • M.E. McCormick: Ocean Wave Energy Conversion (Dover Publications, Mineola 2007)

    Google Scholar 

  • A.P. McCabe, A. Bradshaw, J.A.C. Meadowcroft, G. Aggidis: Developments in the design of the PS Frog Mk 5 wave energy converter, Renew. Energy 31, 141–151 (2006)

    Article  Google Scholar 

  • T.V. Heath: A review of oscillating water columns, Phil. Trans. R. Soc. A 370, 235–245 (2012)

    Article  Google Scholar 

  • A.F.O. Falcão, J.C.C. Henriques: Oscillating-water-column wave energy converters and air turbines: A review, Renew. Energy 85, 139–424 (2016)

    Article  Google Scholar 

  • H. Martin-Rivas, C.C. Mei: Wave power extraction from an oscillating water column along a straight coast, Ocean Eng. 36, 426–433 (2009)

    Article  Google Scholar 

  • A.J.N.A. Sarmento, A.F.O. Falcão: Wave generation by an oscillating surface-pressure and its application in wave-energy extraction, J. Fluid Mech. 150, 467–485 (1985)

    Article  MATH  Google Scholar 

  • D.V. Evans: Wave power absorption by systems of oscillating surface-pressure distributions, J. Fluid Mech. 114, 481–499 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. McCormick: A modified linear analysis of a wave-energy conversion buoy, Ocean Eng. 3(3), 133–144 (1976)

    Article  MathSciNet  Google Scholar 

  • M.G. De Sousa Prado, F. Gardner, M. Damen, H. Polinder: Modelling and test results of the archimedes wave swing, Proc. Inst. Mech. Eng. 220, 855–868 (2006)

    Article  Google Scholar 

  • R.P.F. Gomes, M.F.P. Lopes, J.C.C. Henriques, L.M.C. Gato, A.F.O. Falcão: The dynamics and power extraction of bottom-hinged plate wave energy converters in regular and irregular waves, Ocean Eng. 96, 86–99 (2015)

    Article  Google Scholar 

  • T. Whittaker, M. Folley: Nearshore oscillating wave surge converters and the development of Oyster, Phil. Trans. R. Soc. A 370, 345–364 (2012)

    Article  Google Scholar 

  • J.H. Milgram: Active water-wave absorbers, J. Fluid Mech. 42, 845–859 (1970)

    Article  Google Scholar 

  • R.G. Dean, R.A. Dalrymple: Water Wave Mechanics for Engineers and Scientists (World Scientific, Singapore 1991)

    Google Scholar 

  • J. Falnes: A review of wave-energy extraction, Mar. Struct. 20, 185–201 (2007)

    Article  Google Scholar 

  • A. Mynett, D. Serman, C. Mei: Characteristics of Salter’s Cam for extracting energy from ocean waves, Appl. Ocean Res. 1(1), 13–20 (1979)

    Article  Google Scholar 

  • A.D. Carmichael: An Experimental Study and Engineering Evaluation of the Salter Cam Wave Energy Converter. Report No. MITSG 72–22 (MIT, Cambridge, 1978)

    Google Scholar 

  • P. Haren, C.C. Mei: An array of Hagen–Cockerell wave power absorbers in head seas, Appl. Ocean Res. 4, 51–56 (1982)

    Article  Google Scholar 

  • R. Yemm, D. Pizer, C. Retzler, R. Henderson: Pelamis: Experience from concept to connection, Phil. Trans. R. Soc. A 370, 365–380 (2012)

    Article  Google Scholar 

  • Pelamis Wave Power Downloads. Retrieved from Pelamis Wave Power Ltd. (2012) http://www.pelamiswave.com/upload/document/PWP-brochure-online.pdf

  • M. Jasinski, W. Knapp, M. Faust, E. Fris-Madsen: The power takeoff system of the Multi-MW Wave Dragon Wave Energy Converter, Eur. Wave Tidal Energy Conf. (2007)

    Google Scholar 

  • J.C. Burfoot, G.W. Taylor: Polar Dieletrics and Their Applications (Macmillan, London 1979)

    Google Scholar 

  • G.W. Taylor: Piezoelectric Power Generation from Ocean Waves, Tech. Report. (Princeton Resources, Princeton 1979)

    Google Scholar 

  • R.E. Salomon, S.M. Harding: Gas concentration cells for the conversion of ocean wave energy, Ocean Eng. 6(3), 317–327 (1979)

    Article  Google Scholar 

  • N.I. Xiros: Nonlinear control modeling for arrays of coupled mechatronic transducers, Proc. IMECE2012, Houston (2012), doi:10.1115/IMECE2012-89424

    Google Scholar 

  • M.R. Alam: Nonlinear analysis of an actuated seafloor-mounted carpet for a high-performance wave energy extraction, Proc. R. Soc. A 468, 3153–3171 (2012)

    Article  MathSciNet  Google Scholar 

  • F. Madhi, M.E. Sinclair, R.W. Yeung: The ''Berkeley Wedge'': An asymmetrical energy-capturing floating breakwater of high performance, Mar. Syst. Ocean Technol. 9(1), 5–16 (2014)

    Google Scholar 

  • J.P. Ruiz-Minguela, M. Santos, P. Ibañez, J.L. Villate, F. Salcedo: Control techniques of ocean wave energy converters, Int. Conf. Energy (IADAT-ICE), Bilbao (2008)

    Google Scholar 

  • K. Budal, J. Falnes: Interacting point absorbers with controlled motion. In: Power from Sea Waves, ed. by B. Count (Academic Press, London 1980)

    Google Scholar 

  • S.H. Salter, J.R.M. Taylor, N.J. Caldwell: Power conversion mechanisms for wave energy, Proc. Inst. Mech. Eng. M: J. Eng. Maritime Environ. 216, 1–27 (2002)

    Google Scholar 

  • A.H. Clément, A. Babarit: Discrete control of resonant wave energy devices, Phil. Trans. R. Soc. A 370, 288–314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • M.A. Mueller, N.J. Baker: Direct drive electrical power take-off for offshore marine energy converters, Proc. IMechE A: J. Power Energy 219(A3), 223–234 (2005)

    Article  Google Scholar 

  • T.-H. Kim, M. Takao, T. Setoguchi, K. Kaneko, M. Inoue: Performance comparison of turbines for wave power conversion, Int. J. Therm. Sci. 40(7), 681–689 (2001)

    Article  Google Scholar 

  • M. Takao, T. Setoguchi: Air turbines for wave energy conversion, Int. J. Rotating Mach. 2012, 717398 (2012) doi:10.1155/2012/717398

    Google Scholar 

  • S. Raghunathan: The Wells air turbine for wave energy conversion, Prog. Aerosp. Sci. 31, 335–386 (1995)

    Article  Google Scholar 

  • T. Finnigan, D. Auld: Model testing of a variable-pitch aerodynamic turbine, Proc. ISOPE, ISOPE-I-03-053, Honolulu (2003) pp. 25–30

    Google Scholar 

  • T.W. Kim, K. Kaneko, T. Setoguchi, M. Inoue: Aerodynamic performance of an impulse turbine with self pitch-controlled guide vanes for wave power generator, Proc 1st KSME-JSME Thermal Fluid Eng. Conf., Vol. 2 (1988) pp. 133–137

    Google Scholar 

  • R. Henderson: Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter, Renew. Energy 31(2), 271–283 (2006)

    Article  Google Scholar 

  • Carbon Trust Report: Guidelines on design and operation of wave energy converters, Tech. Rep. (Carbon Trust, Det Norske Veritas 2005) http://www.gl-group.com/pdf/WECguideline_tcm4-270406.pdf

  • T. Omholt: A wave activated electric generator, Proc. Oceans ’78, Mar. Technol. Conf., Washington (1978) pp. 585–589

    Google Scholar 

  • N.I. Xiros, C.S. Edrington, S. Balathandayuthapani: Nonlinear modeling of linear induction machines for analysis and control of novel electric warship subsystems, ASNE Electr. Mach. Technol. Symp. EMTS 10.1.21 (2010)

    Google Scholar 

  • H. Polinder, M.E.C. Damen, F. Gardner: Linear PM generator system for wave energy conversion in the AWS, IEEE Trans. Energy Convers. 19(3), 583–589 (2004)

    Article  Google Scholar 

  • L. Jonsson, M. Krell: Evaluating the Potential of Seabased’s Wave Power Technology in New Zealand, Tech. Rep. UPTEC ES11 002 (Uppsala University, Uppsala 2011)

    Google Scholar 

  • N.I. Xiros, I.K. Chatjigeorgiou: Nonlinear identification and input-output representation of the modal dynamics of marine slender structures, J. Offshore Mech. Arct. Eng. 129(3), 188–200 (2007)

    Article  Google Scholar 

  • D.C. Kazangas, N.I. Xiros, I.K. Chatjigeorgiou: Reduced-order, nonlinear approximation of catenary riser dynamics using frequency domain identification, Proc. IMechE M 227(4), 343–356 (2013)

    Google Scholar 

  • N.I. Xiros, E. Logis, E. Gasparis, S. Tsolakidis, K. Kardasis: Theoretical and experimental investigation of unmanned boat electric propulsion system with PMDC motor and waterjet, J. Mar. Eng. Technol. 8(2), 27–43 (2009)

    Google Scholar 

  • M.I. Xiros, N.I. Xiros: Remarks on wind turbine power absorption increase by including the axial force due to the radial pressure gradient in the general momentum theory, Wind Energy 10(1), 99–102 (2007)

    Article  Google Scholar 

  • S.H. Salter: Wave power, Nature 249(5459), 720–724 (1974)

    Article  Google Scholar 

  • D. Serman: Theory of Salter’s Energy Wave Energy Device in a Random Sea, MS Thesis (Department of Civil Engineering, MIT Cambridge 1978)

    Google Scholar 

  • P. Haren: Optimal design of Haren-Cockerell Raft, MS Thesis (Department of Civil Engineering, MIT Cambridge 1878)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiros, N.I., Dhanak, M.R. (2016). Ocean Wave Energy Conversion Concepts. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics