Skip to main content

On Gradient Like Properties of Population Games, Learning Models and Self Reinforced Processes

  • Conference paper

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 1))

Abstract

We consider ordinary differential equations on the unit simplex of \(\mathbb{R}^{n}\) that naturally occur in population games, models of learning and self reinforced random processes. Generalizing and relying on an idea introduced in Dupuis and Fisher (On the construction of Lyapunov functions for nonlinear Markov processes via relative entropy, 2011), we provide conditions ensuring that these dynamics are gradient like and satisfy a suitable “angle condition”. This is used to prove that omega limit sets and chain transitive sets (under certain smoothness assumptions) consist of equilibria; and that, in the real analytic case, every trajectory converges toward an equilibrium. In the reversible case, the dynamics are shown to be C 1 close to a gradient vector field. Properties of equilibria -with a special emphasis on potential games—and structural stability questions are also considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By this we mean that L is the restriction to Δ of a C 1 map defined in a neighborhood of Δ in \(aff(\varDelta ) =\{ x \in \mathbb{R}^{n}\,:\sum _{i}x_{1} = 1\}\).

References

  1. Benaïm, M.: Vertex-reinforced random walks and a conjecture of Pemantle. Ann. Probab. 25(1), 361–392 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benaïm, M.: Dynamics of Stochastic Approximation Algorithms, Séminaire de Probabilités, XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 1–68. Springer, Berlin (1999)

    Google Scholar 

  3. Benaïm, M., Hirsch, M.W.: Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dyn. Diff. Equ. 8(1), 141–176 (1996). MR 1388167 (97d:58165)

    Google Scholar 

  4. Benaïm, M., Raimond, O.: Self interacting diffusions iii: symmetric interactions. Ann. Probab. 33(5), 1716–1759 (2005)

    Article  MATH  Google Scholar 

  5. Benaïm, M., Weibull, J.: Deterministic approximation of stochastic evolution in games. Econometrica 71(3), 873–903 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benaïm, M., Benjamini, O., Chen, J., Lima, Y.: A generalized polya’s urn with graph based interactions. Rand. Struct. Algorithms 46(4), 614–634 (2015)

    Article  Google Scholar 

  7. Benaïm, M., Raimond, O., Schapira, B.: Strongly reinforced vertex-reinforced random walks on the complete graph. ALEA. Latin Am. J. Probab. Math. Stat. 10(2), 767–782 (2013)

    MATH  Google Scholar 

  8. Chen, J.: Lucas, C.: Generalized polya’s urn: convergence at linearity (2013, preprint) [arXiv:1306.5465]

    Google Scholar 

  9. Chill, R., Haraux, A., Ali-Jendoubi, M., Applications of the lojasiewicz simon, gradient inequality to gradient-like evolution equations. Anal. Appl. 7(4), 351–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dupuis, P., Fisher, M.: On the construction of Lyapunov functions for nonlinear Markov processes via relative entropy. Lefschetz Center for Dynamical Systems (2011, preprint)

    Google Scholar 

  11. Freildin, M., Wentzell, A.D.: Random Perturbations of Dynamical Sytems, 3rd edn. Springer, Heidelberg (2012)

    Google Scholar 

  12. Hirsch, M.W.: Differential Topology, vol. 33. Springer, New York (1976)

    MATH  Google Scholar 

  13. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  14. Hofbauer, J., Sorin, S., Viossat, Y.: Time average replicator and best reply dynamics. Math. Oper. Res. 34(2), 263–269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab. 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux Dérivées Partielles, pp. 87–89. Éditions du C.N.R.S, Paris (1963)

    Google Scholar 

  17. Merlet, B., Nguyen, T.N.: Convergence to equilibrium for discretizations of gradient-like flows on riemannian manifolds. Differ. Integr. Equ. 26(5–6), 571–602 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1980)

    Google Scholar 

  19. Pemantle, R.: Vertex-reinforced random walk. Probab. Theory Relat. Fields 1 117–136 (1992)

    Article  MathSciNet  Google Scholar 

  20. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007). MR 2282181 (2007k:60230)

    Google Scholar 

  21. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos, 2nd edn. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  22. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT, Cambridge (2010)

    MATH  Google Scholar 

  23. Sandholm, W.H.: Population games and deterministic evolutionary dynamics. In: Young, H.P., Zamir, S. (eds.) Handbook of Game Theory, vol. 4, pp. 703–775. North Holland (2015)

    Google Scholar 

  24. van der Hofstad, R., Holmes, M., Kuznetsov, A., Ruszel, W.: Strongly reinforced polya urns with graph-based competition (2014, preprint) [arXiv:1406.0449]

    Google Scholar 

Download references

Acknowledgements

This work was supported by the SNF grant 2000020149871∕1 I would like to thank J. B Bardet, F. Malrieu, M. W Hirsch, J. Hofbauer, J. Robbin, B. Sandholm, S. Sorin, P. A Zitt for numerous discussions on topics related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Benaim .

Editor information

Editors and Affiliations

Appendix

Appendix

Let L be an irreducible rate matrix and \(\pi \in \dot{\varDelta }\) denote the invariant probability of L. That is the unique solution (in Δ) of π L = 0. For all \(f,g \in \mathbb{R}^{n}\) we let

$$\displaystyle{\langle \,f,g\rangle =\sum _{i}f_{i}g_{i},\,\langle \,f,g\rangle _{\pi } =\sum _{i}f_{i}g_{i}\pi _{i}\mbox{ and }\langle \,f,g\rangle _{1/\pi } =\sum _{i}f_{i}g_{i}\frac{1} {\pi _{i}}.}$$

The Dirichlet form of L is the map \(\mathcal{E}: \mathbb{R}^{n}\mapsto \mathbb{R}_{+}\) defined as

$$\displaystyle{\mathcal{E}(\,f) = -\langle \,f,Lf\rangle _{\pi } = \frac{1} {2}\sum _{i,j}(\,f_{i} - f_{j})^{2}L_{ ij}\pi _{i}.}$$

By irreducibility, \(\mathcal{E}(\,f)> 0\) unless f is constant, and the spectral gap

$$\displaystyle{\lambda =\sup \{ \mathcal{E}(\,f):\:\langle \, f,1\rangle _{\pi } = 0,\langle \,f,f\rangle _{\pi } = 1\}}$$

is positive. We let L be the irreducible rate matrix defined by

$$\displaystyle{L_{ij}^{{\ast}} = \frac{\pi _{j}L_{ji}} {\pi _{i}}.}$$

Note that L admits π as invariant probability and that L is the adjoint of L for \(\langle,\rangle _{\pi }.\)

We let \(L^{T}: T\varDelta \mapsto T\varDelta\) be defined by

$$\displaystyle{L^{T}h = hL.}$$

Finally recall that for all \(f \in \mathbb{R}^{n}\) \(\frac{f} {\pi }\) stands for the vector defined by \((\frac{f} {\pi } )_{i} = \frac{f_{i}} {\pi _{i}},i = 1\ldots n.\)

Lemma 8

For all u,v ∈ TΔ

$$\displaystyle{\langle L^{T}u,v\rangle _{ 1/\pi } =\langle L^{{\ast}}(\frac{u} {\pi } ), \frac{v} {\pi } )\rangle _{\pi }}$$

In particular L T is invertible and L T is a definite negative operator for \(\langle,\rangle _{\frac{1} {\pi } }\) whenever L is reversible with respect to π.

Proof

The first assertion follows from elementary algebra. For the second, note that \(\langle L^{T}u,u\rangle _{1/\pi } = -\mathcal{E}(\frac{u} {\pi } ).\) Thus, by irreducibility,

$$\displaystyle{\langle L^{T}u,u\rangle _{ 1/\pi } <0}$$

unless u = 0.   ■ 

1.1 Proof of Lemma 4

Given \(f \in \mathbb{R}^{n}\) we write f ≥ 0 if f i  ≥ 0 for all i. We let \(1 \in \mathbb{R}^{n}\) denote the vector which components are all equal to 1. For all t ≥ 0 we let \(P_{t} = e^{tL}.\) Since L is a rate matrix, (P t ) is a Markov semigroup meaning that P t f ≥ 0 for all \(f \in \mathbb{R}^{n}\) with f ≥ 0 and P t 1 = 1. 

Lemma 9

Let \(I \subset \mathbb{R}\) be an open interval and \(S: I\mapsto \mathbb{R}\) aC 2 function such that \(S^{{\prime\prime}}(t) \geq \alpha> 0.\) Let \(f \in \mathbb{R}^{n}\) be such that f i ∈ I for all i. Then

$$\displaystyle{ \frac{d} {dt}\langle S(P_{t}\,f),1\rangle _{\pi }\vert _{t=0} \leq -\alpha \mathcal{E}(\,f).}$$

Proof

For all u, v ∈ I \(S(v) - S(u) - S^{{\prime}}(u)(v - u) \geq \alpha /2(v - u)^{2}.\) Hence for all i, j

$$\displaystyle{S(\,f_{j}) - S((P_{t}\,f)_{i}) - S^{{\prime}}((P_{ t}\,f)_{i})(\,f_{j} - (P_{t}\,f)_{i}) \geq \alpha /2(\,f_{j} - (P_{t}\,f)_{i})^{2}.}$$

Applying P t to this inequality gives

$$\displaystyle{P_{t}(Sf)_{i} - S((P_{t}\,f)_{i}) \geq \alpha /2P_{t}(\,f_{i} - (P_{t}\,f)_{i})^{2}) =\alpha /2(P_{ t}\,f_{i}^{2} - (P_{ t}\,f)_{i}^{2})}$$

Hence

$$\displaystyle{P_{t}(Sf) - S((P_{t}\,f)) \geq \alpha /2P_{t}(\,f - (P_{t}\,f))^{2}) =\alpha /2(P_{ t}\,f^{2} - (P_{ t}\,f)^{2}).}$$

Therefore, using the fact that \(\langle P_{t}g,1\rangle _{\pi } =\langle g,1\rangle _{\pi }\) leads to

$$\displaystyle{\langle Sf - S(P_{t}\,f),1\rangle _{\pi } \geq \alpha \langle \, f^{2} - (P_{ t}\,f)^{2},1\rangle _{\pi }.}$$

Dividing by t and letting \(t \rightarrow 0\) leads to the desired inequality.  ■ 

Let \(S:]0,\infty [\mapsto \mathbb{R}\) be a C 2 function with positive second derivative. Let \(H_{\pi }^{S}:\varDelta \mapsto \mathbb{R}\) be the map defined by

$$\displaystyle{H_{\pi }^{S}(x) =\sum _{ i}\pi _{i}S(\frac{x_{i}} {\pi _{i}} ).}$$

Corollary 4

For all x ∈Δ

$$\displaystyle{\langle \nabla H_{\pi }^{S}(x),xL\rangle \leq -\alpha \lambda V ar_{\pi }(\,f)}$$

where \(f_{i} = \frac{x_{i}} {\pi _{i}}\)

Proof

For x ∈ Δ let x(t) = xe tL, \(f_{i} = \frac{x_{i}} {\pi _{i}},\,f_{i}(t) = \frac{x_{i}(t)} {\pi _{i}}\) and \(P_{t}^{{\ast}}g = e^{tL^{{\ast}} }g.\) Note that \(P_{t}^{{\ast}}\)) is the adjoint of P t with respect to \(\langle,\rangle _{\pi }.\)

For all \(g \in \mathbb{R}^{n},\langle x(t),g\rangle =\langle x,P_{t}g\rangle =\langle \, f,P_{t}g\rangle _{\pi } =\langle P_{t}^{{\ast}}f,g\rangle _{\pi }\) so that \(f(t) = P_{t}^{{\ast}}f.\) Hence by the preceding lemma applied to L it follows that

$$\displaystyle{\langle \nabla H_{\pi }^{S}(x),xL\rangle = \frac{d} {dt}\langle S(P_{t}^{{\ast}}f),1\rangle _{\pi }\vert _{ t=0} \leq -\alpha \mathcal{E}(\,f) \leq -\alpha \lambda V ar_{\pi }(\,f)}$$

where \(\alpha =\min _{i}S^{{\prime\prime}}(\frac{x_{i}} {\pi _{i}} )> 0.\)  ■ 

We now prove the Lemma. Set \(S(t) =\int _{ 1}^{t}s(u)du.\) Then for all u ∈ T Δ

$$\displaystyle{\langle \nabla H_{\pi }^{S}(x),u\rangle =\sum _{ i}u_{i}s(\frac{x_{i}} {\pi _{i}} )}$$

and the results follows from Corollary 4.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Benaim, M. (2015). On Gradient Like Properties of Population Games, Learning Models and Self Reinforced Processes. In: Bourguignon, JP., Jeltsch, R., Pinto, A., Viana, M. (eds) Dynamics, Games and Science. CIM Series in Mathematical Sciences, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16118-1_8

Download citation

Publish with us

Policies and ethics