Skip to main content

Branching Process Models of Cancer

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Book cover Branching Process Models of Cancer

Part of the book series: Mathematical Biosciences Institute Lecture Series ((STOCHBS,volume 1.1))

Abstract

In this chapter, we will use multitype branching processes with mutation to model cancer. With cancer progression, resistance to therapy, and metastasis in mind, we will investigate τ k , the time of the first type k mutation, and σ k , the time of the first type k mutation that founds a family line that does not die out, as well as the growth of the number of type k cells. The last three sections apply these results to metastasis, ovarian cancer, and tumor heterogeneity. Even though martingales and stable laws are mentioned, these notes should be accessible to a student who is familiar with Poisson processes and continuous time Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antal, T., and Krapivsky, P.L. (2011) Exact solution of a two-type branching process: models of tumor progression. J. Stat. Mech.: Theory and Experiment arXiv: 1105.1157

    Google Scholar 

  2. Armitage, P. (1952) The statistical theory of bacterial populations subject to mutations. J. Royal Statistical Society, B. 14, 1–40

    MATH  MathSciNet  Google Scholar 

  3. Athreya, K.B., and P.E. Ney (1972) Branching Processes. Springer-Verlag, new York

    Google Scholar 

  4. Bailey, N.T.J. (1964) The Elements of Stochastic Processes. John Wiley and Sons, New York

    MATH  Google Scholar 

  5. Bozic I., Antal T., Ohtsuki H., Carter H., Kim D., Chen, S., Karchin, R., Kinzler, K.W., Vogelstein, B., and Nowak, M.A. (2010) Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. 107, 18545–18550

    Article  Google Scholar 

  6. Crump. K.S., and Hoel, D.G. (1974) Mathematical models for estimating mutation rates in cell populations. Biometrika. 61, 237–252

    Article  MATH  MathSciNet  Google Scholar 

  7. Danesh, K., Durrett, R., Havrliesky, L., and Myers, E. (2013) A branching process model of ovarian cancer. J. Theor. Biol. 314, 10–15

    Article  Google Scholar 

  8. Darling, D.A. (1952) The role of the maximum term in the sum of independent random variables. Trans. American Math Society. 72, 85–107

    MathSciNet  Google Scholar 

  9. Durrett, R. (2008) Probability Models for DNA Sequence Evolution. Second Edition. Springer, New York

    Book  MATH  Google Scholar 

  10. Durrett, R. (2010) Probability: Theory and Examples. Fourth edition. Cambridge U. Press

    Book  Google Scholar 

  11. Durrett, R., Foo, J., Leder, K., Mayberry, J., Michor, F. (2010) Evolutionary dynamics of tumor progression with random fitness values. Theor. Popul. Biol. 78, 54–66

    Article  Google Scholar 

  12. Durrett, R., Foo, J., Leder, K., Mayberry, J., Michor, F. (2011) Intratumor heterogeneity in evolutionary models of tumor progresssion. Genetics. 188, 461–477

    Article  Google Scholar 

  13. Durrett, R., and Moseley, S. (2010) Evolution of resistance and progression to disease during clonal expansion of cancer. Theor. Popul. Biol. 77, 42–48

    Article  Google Scholar 

  14. Durrett, R., and Schweinsberg, J.. (2004) Approximating selective sweeps. Theor. Popul. Biol. 66, 129–138

    Article  MATH  Google Scholar 

  15. Durrett, R., and Schweinsberg, J. (2005) Power laws for family sizes in a gene duplication model. Ann. Probab. 33, 2094–2126

    Article  MATH  MathSciNet  Google Scholar 

  16. Foo, Jasmine and Leder, Kevin (2013) Dynamics of cancer recurrence. Ann. Appl. Probab. 23, 1437–1468.

    Article  MATH  MathSciNet  Google Scholar 

  17. Foo, J., Leder, K., and Mummenthaler, S. (2013) Cancer as a moving target: understanding the composition and rebound growth kinetics of recurrent tumors. Evolutionary Applications. 6, 54–69

    Article  Google Scholar 

  18. Fuchs, A., Joffe, A., and Teugels, J. (2001) Expectation of the ratio of the sums of squares to the square of the sum: exact and asymptotic results. Theory Probab. Appl. 46, 243–255

    Article  MATH  MathSciNet  Google Scholar 

  19. Griffiths, R.C., and Pakes, A.G. (1988) An infinite-alleles version of the simple branching process Adv. Appl. Prob. 20, 489–524

    Google Scholar 

  20. Haeno, H., Conen, M., Davis, M.B., Hrman, J.M., Iacobuzio-Donahue, C.A., and Michor, F. (2012) Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 148, 362–375

    Article  Google Scholar 

  21. Haeno, H., Iwasa, Y., and Michor, F. (2007) The evolution of two mutations during clonal expansion. Genetics. 177, 2209–2221

    Article  Google Scholar 

  22. Haeno, H., and Michor, F. (2010) The evolution of tumor metastases during clonal expansion. J Theor. Biol. 263, 30–44

    Article  MathSciNet  Google Scholar 

  23. Harris, T.E. (1948) Branching processes. Ann. Math. Statist. 19, 474–494

    Article  MATH  Google Scholar 

  24. Iwasa, Y., Nowak, M.A., and Michor, F. (2006) Evolution of resistance during clonal expansion. Genetics. 172, 2557–2566

    Article  Google Scholar 

  25. Kingman, J.F.C. (1975) Random discrete distributions. J. Royal Statistical Society, B. 37, 1–22

    MATH  MathSciNet  Google Scholar 

  26. Komarova, N.L., Wu, Lin, and Baldi, P. (2007) The fixed-size Luria-Delbruck model with a non-zero death rate. Mathematical Biosciences. 210, 253–290

    Article  MATH  MathSciNet  Google Scholar 

  27. Logan, B.F., Mallows, C.L., Rice, S.O., and Shepp, L.A. (1973) Limit distributionsof self-normalized random sums. Annals of Probability. 1, 788–809

    Article  MATH  MathSciNet  Google Scholar 

  28. Lea, E.A., and Coulson, C.A. (1949) The distribution of the number of mutants in bacterial populations. Journal of Genetics. 49, 264–285

    Article  Google Scholar 

  29. Leder, K., Foo, J., Skaggs, B., Gorre, M., Sawyers, C.L., and Michor, F. (2011) Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia. PLoS One. 6, paper e27682

    Google Scholar 

  30. Luria, S.E., and Delbruck, M. (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 28, 491–511

    Google Scholar 

  31. Michor, F, et al. (2005) Dynamics of chronic myeloid leukemia. Nature. 435, 1267–1270

    Article  Google Scholar 

  32. O’Connell, N. (1993) Yule approximation for the skeleton of a branching process. J. Appl. Prob. 30, 725–729

    Article  MATH  MathSciNet  Google Scholar 

  33. Parzen, E. (1962) Stochastic Processes. Holden-Day, San Francisco

    MATH  Google Scholar 

  34. Pitman, J., and Yor, M. (1997) The two parameter Poisson-Dirichlet distribution derived from a stabel subordinator. Annals of Probability. 25, 855–900

    Article  MATH  MathSciNet  Google Scholar 

  35. Slatkin, M., and Hudson, R.R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 129, 555–562

    Google Scholar 

  36. Tomasetti, C., and Levy, D. (2010) Roles of symmetric and asymmetric division of stem cells in developing drug resistance. Proc. natl. Acad. Sci. 107, 16766–16771

    Article  Google Scholar 

  37. Zheng, Q. (1999) Progress of a half-century in the study of the Luria-Delbrück distribution. Mathematical Biosciences. 162, 1–32

    Article  MATH  MathSciNet  Google Scholar 

  38. Zheng, Q. (2009) Remarks on the asymptotics of the Luria-Delbruck and related distributions. J. Appl. Prob. 46, 1221–1224 Cancer Biology

    Google Scholar 

  39. Armitage, P. (1985) Multistage models of carcinogenesis. Environmental health Perspectives. 63, 195–201

    Article  Google Scholar 

  40. Armitage, P., and Doll, R. (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. British J. Cancer. 8, 1–12

    Article  Google Scholar 

  41. Brown, P.O., and Palmer, C. (2009) The preclinical natural history of serous ovarian cancer: defining the target for early detection. PLoS Medicine. 6(7):e1000114.

    Article  Google Scholar 

  42. Buys SS, Partridge E, Black A, et al. (2011) Effect of screening on ovarian cancer mortality The prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA 305(22): 2295–2303. doi:10.1001/jama.2011.766.

    Article  Google Scholar 

  43. Collisson, E.A., Cho, R.J., and Gray, J.W. (2012) What are we learning from the cancer genome? Nature Reviews. Clinical Oncology. 9, 621–630

    Article  Google Scholar 

  44. Decruze, S.B., and Kirwan, J.M. (2006) Ovarian cancer. Current Obstetrics and Gynecology. 16(3): 161–167

    Article  Google Scholar 

  45. Fearon, E.F. (2011) Molevular genetics of colon cancer. Annu. Rev. Pathol. Mech. Dis. 6, 479–507

    Article  Google Scholar 

  46. Fearon, E.R., and Vogelstein, B. (1990) A genetic model fro colorectal tumorigenesis. Cell. 87, 759–767

    Article  Google Scholar 

  47. Feller, L., Kramer, B., and Lemmer, J. (2012) Pathobiology of cancer metastasis: a short account. Caner Cell International. 12, paper 24

    Google Scholar 

  48. Fidler, I.J. (1978) Tumor heterogeneity and the biology of cancer invasion and metastases. Cancer Research. 38, 2651–2660

    Google Scholar 

  49. Fisher, J.C., and Holloman, J.H. (1951) A hypothesis for the origin of cancer foci. British J. Cancer. 7, 407–417

    Google Scholar 

  50. Fisher, R., Pusztai, L., and Swanton, C. (2013) Cancer heterogeneity: implications for targeted therapeutics. Cancer Research.

    Google Scholar 

  51. Gerlinger, M. et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New England Journal of Medicine. 366, 883–892

    Article  Google Scholar 

  52. Knudson, A.G., Jr. (1971) Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. 68, 820–823

    Article  Google Scholar 

  53. Knudson, A.G. (2001) Two genetic hits (more or less) to cancer. Nature Reviews Cancer. 1, 157–162

    Article  Google Scholar 

  54. Jones, S., et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321, 1801–1812

    Article  Google Scholar 

  55. Lengyel, E. (2010) Ovarian cancer development and metastasis. The American Journal of Pathology. 177(3): 1053–1064

    Article  Google Scholar 

  56. Luebeck, E.G., and Mollgavkar, S.H. (2002) Multistage carcinogenesis and teh incidence of colorectal cancer. proc. natl. Acad. Sci. 99, 15095–15100

    Google Scholar 

  57. Maley, C.C., et al. (2006) Genetic clonal diversity predicts progresssion to esophageal adenocarcinoma. Nature Genetics. 38, 468–473

    Article  Google Scholar 

  58. Merlo, L.M.F., et al (2010) A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prevention Research. 3, 1388–

    Google Scholar 

  59. Naora, H., and Montell, D.J. (2005) Ovarian cancer metastasis: integrating insights from disparate model organisms. Nature Reviews Cancer. 5(5): 355–366

    Article  Google Scholar 

  60. Navin, N., et al (2011) Tumor evolution inferred from single cell sequencing. Nature. 472, 90–94

    Article  Google Scholar 

  61. Nordling, C.O. (1953) A new theory on cancer inducing mechanism. British J. Cancer. 7, 68–72

    Article  Google Scholar 

  62. Park, S.Y., Gönen, M, Kim, H.J., Michor, F., and Polyak, K. (2010) Cellular and genetic diversity in the progression of in situ human breast cancer to an invasive phenotype.

    Google Scholar 

  63. Parsons, D.W., et al. (2008) An integrated genotmic analysis of human glioblastome multiforme. Science. 321, 1807–1812

    Article  Google Scholar 

  64. Russnes, H.G., Navin, N., Hicks, J., and Borrensen-Dale, A.L. (2011) Insight into the heterogeniety of breast cancer inferred through next generation sequencing. J. Clin. Invest. 121, 3810–3818

    Article  Google Scholar 

  65. Siegel, R., Naishadham, D., and Jemal, A. (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians. 62: 1029. doi: 10.3322/caac.20138

    Google Scholar 

  66. Sjöblom, T., et al. (2006) The consensus coding sequences of human breast and colorectal cancers. Science. 314, 268–274

    Article  Google Scholar 

  67. Sottoriva, A., et al. (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl. Acad. Sci. 110, 4009–4014

    Article  Google Scholar 

  68. Surveillance, Epidemiology, and End Results (SEER) Program. http://seer.cancer.gov/.

  69. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455, 1061–1068

    Article  Google Scholar 

  70. Tomasettim C., Vogelstein, B., and Parmigiani, G. (2013) Half or more somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. 110, 1999–2004

    Article  Google Scholar 

  71. Valastyan, S., and Weinberg, R.A. (2011) Tumor metastasis: Moecluar insights and evolving pardigms. Cell. 147, 275–292

    Article  Google Scholar 

  72. Wood, L.D., et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science. 318, 1108–1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Durrett .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Durrett, R. (2015). Branching Process Models of Cancer. In: Branching Process Models of Cancer. Mathematical Biosciences Institute Lecture Series(), vol 1.1. Springer, Cham. https://doi.org/10.1007/978-3-319-16065-8_1

Download citation

Publish with us

Policies and ethics