Skip to main content

A GPU-Based Algorithm for a Faster Hypervolume Contribution Computation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9019))

Abstract

The hypervolume has become very popular in current multi-objective optimization research. Because of its highly desirable features, it has been used not only as a quality measure for comparing final results of multi-objective evolutionary algorithms (MOEAs), but also as a selection operator (it is, for example, very suitable for many-objective optimization problems). However, it has one serious drawback: computing the exact hypervolume is highly costly. The best known algorithms to compute the hypervolume are polynomial in the number of points, but their cost grows exponentially with the number of objectives. This paper proposes a novel approach which, through the use of Graphics Processing Units (GPUs), computes in a faster way the hypervolume contribution of a point. We develop a highly parallel implementation of our approach and demonstrate its performance when using it within the \(\mathcal {S}\) -Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA). Our results indicate that our proposed approach is able to achieve a significant speed up (of up to 883x) with respect to its sequential counterpart, which allows us to use SMS-EMOA with exact hypervolume calculations, in problems having up to 9 objective functions.

The third author gratefully acknowledges support from a Cátedra Marcos Moshinsky 2014 and from CONACyT project no. 221551.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April 30-May 2, 1968, Spring Joint Computer Conference, AFIPS 1968 (Spring), pp. 307–314. ACM, New York (1968)

    Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  3. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. Computational Geometry-Theory and Applications 43(6–7), 601–610 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). ISBN: 978-0-387-33254-3

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)

    Chapter  Google Scholar 

  7. Everson, R.M., Fieldsend, J.E., Singh, S.: Full elite sets for multi-objective optimisation. In: Parmee, I. (ed.) Proceedings of the Fifth International Conference on Adaptive Computing Design and Manufacture (ACDM 2002), University of Exeter, Devon, UK, April 2002, vol. 5, pp. 343–354. Springer-Verlag (2002)

    Google Scholar 

  8. Fleischer, M.: The measure of pareto optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. 21(9), 948–960 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, July 2006, pp. 3973–3979. IEEE (2006)

    Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  Google Scholar 

  12. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: 2008 Congress on Evolutionary Computation (CEC 2008), Hong Kong, pp. 2424–2431. IEEE Service Center, June 2008

    Google Scholar 

  13. Menchaca-Mendez, A., Coello Coello, C.A.: A new selection mechanism based on hypervolume and its locality property. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), Cancún, México, pp. 924–931. IEEE Press, June 20–23, 2013. ISBN: 978-1-4799-0454-9

    Google Scholar 

  14. NVIDIA Corporation. Cuda zone (2014)

    Google Scholar 

  15. While, L.: A new analysis of the lebmeasure algorithm for calculating hypervolume. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 326–340. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. While, L., Hingston, P., Barone, L., Huband, S.: A Faster Algorithm for Calculating Hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  17. Wu, J., Azarm, S.: Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set. Transactions of the ASME, Journal of Mechanical Design 123, 18–25 (2001)

    Article  Google Scholar 

  18. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Coello Coello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lopez, E.M., Antonio, L.M., Coello Coello, C.A. (2015). A GPU-Based Algorithm for a Faster Hypervolume Contribution Computation. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15892-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15891-4

  • Online ISBN: 978-3-319-15892-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics