Skip to main content

How Cardiac Cytoarchitecture Can Go Wrong: Hypertrophic Cardiomyopathy as a Paradigm for Genetic Disease of the Heart

  • Chapter
  • First Online:
Cardiac Cytoarchitecture

Abstract

The genetic cardiomyopathies are a group of inherited heart disorders with variable pathophysiology and clinical phenotype. As an example, hypertrophic cardiomyopathy will be discussed in this chapter. Clinical features and therapeutic options will be outlined, followed by a review of the underlying genetics of disease. The pathomechanisms of causative mutations will be discussed, with reference to both sarcomeric and non-sarcomeric genes. Finally, the potential and pitfalls of next-generation sequencing as applied to genetic cardiomyopathies will be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122(16):1562–1569. doi:10.1161/CIRCULATIONAHA.109.934059

    Article  CAS  PubMed  Google Scholar 

  • Ackermann MA, Kontrogianni-Konstantopoulos A (2011) Myosin binding protein-C: a regulator of actomyosin interaction in striated muscle. J Biomed Biotechnol 2011:636403. doi:10.1155/2011/636403

    Article  PubMed Central  PubMed  Google Scholar 

  • Afonso LC, Bernal J, Bax JJ, Abraham TP (2008) Echocardiography in hypertrophic cardiomyopathy: the role of conventional and emerging technologies. JACC Cardiovasc Imaging 1(6):787–800. doi:10.1016/j.jcmg.2008.09.002

    Article  PubMed  Google Scholar 

  • Alders M, Jongbloed R, Deelen W, van den Wijngaard A, Doevendans P, Ten Cate F, Regitz-Zagrosek V, Vosberg HP, van Langen I, Wilde A, Dooijes D, Mannens M (2003) The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J 24(20):1848–1853

    Article  CAS  PubMed  Google Scholar 

  • Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, Sajadieh A, Haunso S, Svendsen JH, Olesen MS (2013) New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet 21(9):918–928. doi:10.1038/ejhg.2012.283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, Barr S, Karim A, Olson TM, Kamisago M, Seidman JG, Seidman CE (2005) Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112(18):2805–2811. doi:10.1161/CIRCULATIONAHA.105.547448

    Article  CAS  PubMed  Google Scholar 

  • Arbustini E, Narula N, Tavazzi L, Serio A, Grasso M, Favalli V, Bellazzi R, Tajik JA, Bonow RD, Fuster V, Narula J (2014) The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol 64(3):304–318. doi:10.1016/j.jacc.2014.05.027

    Article  PubMed  Google Scholar 

  • Arimura T, Bos JM, Sato A, Kubo T, Okamoto H, Nishi H, Harada H, Koga Y, Moulik M, Doi YL, Towbin JA, Ackerman MJ, Kimura A (2009) Cardiac ankyrin repeat protein gene (ANKRD1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol 54(4):334–342. doi:10.1016/j.jacc.2008.12.082

    Article  CAS  PubMed  Google Scholar 

  • Ashrafian H, Redwood C, Blair E, Watkins H (2003) Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genetic 19(5):263–268. doi:10.1016/S0168-9525(03)00081-7

    Article  CAS  Google Scholar 

  • Azibani F, Muchir A, Vignier N, Bonne G, Bertrand AT (2014) Striated muscle laminopathies. Semin Cell Dev Biol 29C:107–115. doi:10.1016/j.semcdb.2014.01.001

    Article  Google Scholar 

  • Becker E, Navarro-Lopez F, Francino A, Brenner B, Kraft T (2007) Quantification of mutant versus wild-type myosin in human muscle biopsies using nano-LC/ESI-MS. Anal Chem 79(24):9531–9538. doi:10.1021/ac701711h

    Article  CAS  PubMed  Google Scholar 

  • Belus A, Piroddi N, Scellini B, Tesi C, D’Amati G, Girolami F, Yacoub M, Cecchi F, Olivotto I, Poggesi C (2008) The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol 586(Pt 15):3639–3644. doi:10.1113/jphysiol.2008.155952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B (2009) Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4):426–435. doi:10.1016/j.yjmcc.2009.04.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bos JM, Poley RN, Ny M, Tester DJ, Xu X, Vatta M, Towbin JA, Gersh BJ, Ommen SR, Ackerman MJ (2006) Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab 88(1):78–85. doi:10.1016/j.ymgme.2005.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cahill TJ, Ashrafian H, Watkins H (2013) Genetic cardiomyopathies causing heart failure. Circ Res 113(6):660–675. doi:10.1161/CIRCRESAHA.113.300282

    Article  CAS  PubMed  Google Scholar 

  • Carballo S, Robinson P, Otway R, Fatkin D, Jongbloed JD, de Jonge N, Blair E, van Tintelen JP, Redwood C, Watkins H (2009) Identification and functional characterization of cardiac troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ Res 105(4):375–382. doi:10.1161/CIRCRESAHA.109.196055

    Article  CAS  PubMed  Google Scholar 

  • Carrier L, Schlossarek S, Willis MS, Eschenhagen T (2010) The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 85(2):330–338. doi:10.1093/cvr/cvp247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chauveau C, Rowell J, Ferreiro A (2014) A rising titan: TTN review and mutation update. Hum Mutat 35(9):1046–1059. doi:10.1002/humu.22611

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Benn M, Tybjaerg-Hansen A, Haunso S, Svendsen JH (2010) Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients–disease-causing or innocent bystanders? Cardiology 115(2):148–154. doi:10.1159/000263456

    Article  CAS  PubMed  Google Scholar 

  • Christiaans I, Nannenberg EA, Dooijes D, Jongbloed RJ, Michels M, Postema PG, Majoor-Krakauer D, van den Wijngaard A, Mannens MM, van Tintelen JP, van Langen IM, Wilde AA (2010) Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands. Neth Heart J 18(5):248–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christodoulou DC, Wakimoto H, Onoue K, Eminaga S, Gorham JM, DePalma SR, Herman DS, Teekakirikul P, Conner DA, McKean DM, Domenighetti AA, Aboukhalil A, Chang S, Srivastava G, McDonough B, De Jager PL, Chen J, Bulyk ML, Muehlschlegel JD, Seidman CE, Seidman JG (2014) 5′RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy. J Clin Invest 124(3):1364–1370. doi:10.1172/JCI70108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craig R, Lee KH, Mun JY, Torre I, Luther PK (2014) Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Arch 466(3):425–431. doi:10.1007/s00424-013-1426-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K, Watkins H (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41(10):1776–1782

    Article  CAS  PubMed  Google Scholar 

  • Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, Merker JD, Goldfeder RL, Enns GM, David SP, Pakdaman N, Ormond KE, Caleshu C, Kingham K, Klein TE, Whirl-Carrillo M, Sakamoto K, Wheeler MT, Butte AJ, Ford JM, Boxer L, Ioannidis JP, Yeung AC, Altman RB, Assimes TL, Snyder M, Ashley EA, Quertermous T (2014) Clinical interpretation and implications of whole-genome sequencing. JAMA 311(10):1035–1045. doi:10.1001/jama.2014.1717

    Article  CAS  PubMed  Google Scholar 

  • Ferrantini C, Belus A, Piroddi N, Scellini B, Tesi C, Poggesi C (2009) Mechanical and energetic consequences of HCM-causing mutations. J Cardiovasc Transl Res 2(4):441–451. doi:10.1007/s12265-009-9131-8

    Article  PubMed  Google Scholar 

  • Flavigny J, Richard P, Isnard R, Carrier L, Charron P, Bonne G, Forissier JF, Desnos M, Dubourg O, Komajda M, Schwartz K, Hainque B (1998) Identification of two novel mutations in the ventricular regulatory myosin light chain gene (MYL2) associated with familial and classical forms of hypertrophic cardiomyopathy. J Mol Med 76(3–4):208–214

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Brixius K, Schwinger RH, Benis T, Karpowski A, Lorenzen HP, Luedde M, Katus HA, Franz WM (2006) Alterations of tension-dependent ATP utilization in a transgenic rat model of hypertrophic cardiomyopathy. J Biol Chem 281(40):29575–29582. doi:10.1074/jbc.M507740200

    Article  CAS  PubMed  Google Scholar 

  • Friedrich FW, Wilding BR, Reischmann S, Crocini C, Lang P, Charron P, Muller OJ, McGrath MJ, Vollert I, Hansen A, Linke WA, Hengstenberg C, Bonne G, Morner S, Wichter T, Madeira H, Arbustini E, Eschenhagen T, Mitchell CA, Isnard R, Carrier L (2012) Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet 21(14):3237–3254. doi:10.1093/hmg/dds157

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pavia P, Vazquez ME, Segovia J, Salas C, Avellana P, Gomez-Bueno M, Vilches C, Gallardo ME, Garesse R, Molano J, Bornstein B, Alonso-Pulpon L (2011) Genetic basis of end-stage hypertrophic cardiomyopathy. Eur J Heart Fail 13(11):1193–1201. doi:10.1093/eurjhf/hfr110

    Article  CAS  PubMed  Google Scholar 

  • Gehmlich K, Geier C, Osterziel KJ, Van der Ven PF, Furst DO (2004) Decreased interactions of mutant muscle LIM protein (MLP) with N-RAP and alpha-actinin and their implication for hypertrophic cardiomyopathy. Cell Tissue Res 317(2):129–136. doi:10.1007/s00441-004-0873-y

    Article  CAS  PubMed  Google Scholar 

  • Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Furst DO, Vornwald A, von Hodenberg E, Nurnberg P, Scheffold T, Dietz R, Osterziel KJ (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107(10):1390–1395

    Article  CAS  PubMed  Google Scholar 

  • Geier C, Gehmlich K, Ehler E, Hassfeld S, Perrot A, Hayess K, Cardim N, Wenzel K, Erdmann B, Krackhardt F, Posch MG, Osterziel KJ, Bublak A, Nagele H, Scheffold T, Dietz R, Chien KR, Spuler S, Furst DO, Nurnberg P, Ozcelik C (2008) Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum Mol Genet 17(18):2753–2765. doi:10.1093/hmg/ddn160

    Article  CAS  PubMed  Google Scholar 

  • Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62(5):999–1006

    Article  CAS  PubMed  Google Scholar 

  • Gomes AV, Liang J, Potter JD (2005) Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 280(35):30909–30915. doi:10.1074/jbc.M500287200

    Article  CAS  PubMed  Google Scholar 

  • Govindaraj P, Khan NA, Rani B, Rani DS, Selvaraj P, Jyothi V, Bahl A, Narasimhan C, Rakshak D, Premkumar K, Khullar M, Thangaraj K (2014) Mitochondrial DNA variations associated with hypertrophic cardiomyopathy. Mitochondrion 16:65–72. doi:10.1016/j.mito.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  • Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC (2009) Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol 297(2):H614–H626. doi:10.1152/ajpheart.01143.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 5(3):413–429. doi:10.1002/emmm.201201553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartmannova H, Kubanek M, Sramko M, Piherova L, Noskova L, Hodanova K, Stranecky V, Pristoupilova A, Sovova J, Marek T, Maluskova J, Ridzon P, Kautzner J, Hulkova H, Kmoch S (2013) Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. Circ Cardiovasc Genet 6(6):543–551. doi:10.1161/CIRCGENETICS.113.000245

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, Hori H, Yasunami M, Nishi H, Koga Y, Nakamura H, Matsuzaki M, Choi BY, Bae SW, You CW, Han KH, Park JE, Knoll R, Hoshijima M, Chien KR, Kimura A (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44(11):2192–2201. doi:10.1016/j.jacc.2004.08.058

    Article  CAS  PubMed  Google Scholar 

  • Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628. doi:10.1056/NEJMoa1110186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Colan SD, Seidman JG, Diez J, Seidman CE (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363(6):552–563. doi:10.1056/NEJMoa1002659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaaskelainen P, Helio T, Aalto-Setala K, Kaartinen M, Ilveskoski E, Hamalainen L, Melin J, Nieminen MS, Laakso M, Kuusisto J, Fin HCM, Kervinen H, Mustonen J, Juvonen J, Niemi M, Uusimaa P, Huttunen M, Kotila M, Pietila M (2013) Two founder mutations in the alpha-tropomyosin and the cardiac myosin-binding protein C genes are common causes of hypertrophic cardiomyopathy in the Finnish population. Ann Med 45(1):85–90. doi:10.3109/07853890.2012.671534

    Article  PubMed  Google Scholar 

  • Jaaskelainen P, Helio T, Aalto-Setala K, Kaartinen M, Ilveskoski E, Hamalainen L, Melin J, Karkkainen S, Peuhkurinen K, Nieminen MS, Laakso M, the Finhcm Study G, Kuusisto J (2014) A new common mutation in the cardiac beta-myosin heavy chain gene in Finnish patients with hypertrophic cardiomyopathy. Ann Med 46(6):424–429. doi:10.3109/07853890.2014.912834

    Article  PubMed  Google Scholar 

  • Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T (1997) Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 16(4):379–382. doi:10.1038/ng0897-379

    Article  CAS  PubMed  Google Scholar 

  • Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111(7):943–955

    Article  CAS  PubMed  Google Scholar 

  • Knoll R, Kostin S, Klede S, Savvatis K, Klinge L, Stehle I, Gunkel S, Kotter S, Babicz K, Sohns M, Miocic S, Didie M, Knoll G, Zimmermann WH, Thelen P, Bickeboller H, Maier LS, Schaper W, Schaper J, Kraft T, Tschope C, Linke WA, Chien KR (2010) A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ Res 106(4):695–704. doi:10.1161/CIRCRESAHA.109.206243

    Article  PubMed  Google Scholar 

  • Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M (2003) Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res 92(4):428–436. doi:10.1161/01.RES.0000059562.91384.1A

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Blackshear JL, Ibrahim el SH, Mergo P, Parikh P, Batton K, Shapiro B (2013) Advances of cardiovascular MRI in hypertrophic cardiomyopathy. Future Cardiol 9(5):697–709. doi:10.2217/fca.13.58

    Article  CAS  PubMed  Google Scholar 

  • Lopes LR, Rahman MS, Elliott PM (2013a) A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 99(24):1800–1811. doi:10.1136/heartjnl-2013-303939

    Article  PubMed  Google Scholar 

  • Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, Jenkins S, McKenna W, Uk10k Consortium, Plagnol V, Elliott PM (2013b) Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet 50(4):228–239. doi:10.1136/jmedgenet-2012-101270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahmoud SA, Poizat C (2013) Epigenetics and chromatin remodeling in adult cardiomyopathy. J Pathol 231(2):147–157. doi:10.1002/path.4234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320

    Article  PubMed  Google Scholar 

  • Maron BJ, Shen WK, Link MS, Epstein AE, Almquist AK, Daubert JP, Bardy GH, Favale S, Rea RF, Boriani G, Estes NA III, Spirito P (2000) Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med 342(6):365–373. doi:10.1056/NEJM200002103420601

    Article  CAS  PubMed  Google Scholar 

  • Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119(8):1085–1092. doi:10.1161/CIRCULATIONAHA.108.804617

    Article  PubMed  Google Scholar 

  • Maron MS, Kalsmith BM, Udelson JE, Li W, DeNofrio D (2010) Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3(5):574–579. doi:10.1161/CIRCHEARTFAILURE.109.922872

    Article  PubMed  Google Scholar 

  • Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS (2014) Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol 64(1):83–99. doi:10.1016/j.jacc.2014.05.003

    Article  PubMed  Google Scholar 

  • Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105(3):219–222. doi:10.1161/CIRCRESAHA.109.202440

    Article  CAS  PubMed  Google Scholar 

  • Marston S, Copeland O, Gehmlich K, Schlossarek S, Carrier L (2012) How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J Muscle Res Cell Motil 33(1):75–80. doi:10.1007/s10974-011-9268-3

    Article  CAS  PubMed  Google Scholar 

  • Monserrat L, Gimeno-Blanes JR, Marin F, Hermida-Prieto M, Garcia-Honrubia A, Perez I, Fernandez X, de Nicolas R, de la Morena G, Paya E, Yague J, Egido J (2007a) Prevalence of fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 50(25):2399–2403. doi:10.1016/j.jacc.2007.06.062

    Article  PubMed  Google Scholar 

  • Monserrat L, Hermida-Prieto M, Fernandez X, Rodriguez I, Dumont C, Cazon L, Cuesta MG, Gonzalez-Juanatey C, Peteiro J, Alvarez N, Penas-Lado M, Castro-Beiras A (2007b) Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J 28(16):1953–1961. doi:10.1093/eurheartj/ehm239

    Article  CAS  PubMed  Google Scholar 

  • Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA, Watkins H (1997) Sudden death due to troponin T mutations. J Am Coll Cardiol 29(3):549–555

    Article  CAS  PubMed  Google Scholar 

  • Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP (2000) A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 101(12):1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Moolman-Smook J, De Lange W, Corfield V, Brink P (2000) Expression of HCM causing mutations: lessons learnt from genotype-phenotype studies of the South African founder MYH7 A797T mutation. J Med Genet 37(12):951–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimics hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930. doi:10.1016/j.jacc.2004.11.053

    Article  CAS  PubMed  Google Scholar 

  • O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L, Chandrasekaran B, Bucciarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard MN, Elliott PM, Pennell DJ, Prasad SK (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874. doi:10.1016/j.jacc.2010.05.010

    Article  PubMed  Google Scholar 

  • Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM, Nistri S, Sgalambro A, Grifoni C, Torricelli F, Camici PG, Cecchi F (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol 58(8):839–848. doi:10.1016/j.jacc.2011.05.018

    Article  PubMed  Google Scholar 

  • Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, Willerson JT, Marian AJ (2007) Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 100(6):766–768. doi:10.1161/01.RES.0000263008.66799.aa

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan S, Caleshu CA, Dunn KE, Foti MJ, Moran MK, Soyinka O, Ashley EA (2012) Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation. Circ Cardiovasc Genet 5(6):602–610. doi:10.1161/CIRCGENETICS.112.963421

    Article  PubMed Central  PubMed  Google Scholar 

  • Pasquale F, Syrris P, Kaski JP, Mogensen J, McKenna WJ, Elliott P (2012) Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ Cardiovasc Genet 5(1):10–17. doi:10.1161/CIRCGENETICS.111.959973

    Article  CAS  PubMed  Google Scholar 

  • Pelliccia A, Maron MS, Maron BJ (2012) Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis 54(5):387–396. doi:10.1016/j.pcad.2012.01.003

    Article  PubMed  Google Scholar 

  • Pena JR, Szkudlarek AC, Warren CM, Heinrich LS, Gaffin RD, Jagatheesan G, del Monte F, Hajjar RJ, Goldspink PH, Solaro RJ, Wieczorek DF, Wolska BM (2010) Neonatal gene transfer of Serca2a delays onset of hypertrophic remodeling and improves function in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 49(6):993–1002. doi:10.1016/j.yjmcc.2010.09.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13(1):63–69. doi:10.1038/ng0596-63

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M, Project EHF (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107(17):2227–2232. doi:10.1161/01.CIR.0000066323.15244.54

    Article  PubMed  Google Scholar 

  • Robinson P, Mirza M, Knott A, Abdulrazzak H, Willott R, Marston S, Watkins H, Redwood C (2002) Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem 277(43):40710–40716. doi:10.1074/jbc.M203446200

    Article  CAS  PubMed  Google Scholar 

  • Robinson P, Griffiths PJ, Watkins H, Redwood CS (2007) Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res 101(12):1266–1273. doi:10.1161/CIRCRESAHA.107.156380

    Article  CAS  PubMed  Google Scholar 

  • Schessl J, Feldkirchner S, Kubny C, Schoser B (2011) Reducing body myopathy and other FHL1-related muscular disorders. Semin Pediatr Neurol 18(4):257–263. doi:10.1016/j.spen.2011.10.007

    Article  PubMed  Google Scholar 

  • Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D, Pennell DJ, McKenna WJ (2008) Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 52(25):2175–2187. doi:10.1016/j.jacc.2008.09.019

    Article  PubMed  Google Scholar 

  • Sequeira V, Wijnker PJ, Nijenkamp LL, Kuster DW, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJ, Ho CY, Michels M, van der Velden J (2013) Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 112(11):1491–1505. doi:10.1161/CIRCRESAHA.111.300436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song W, Dyer E, Stuckey DJ, Copeland O, Leung MC, Bayliss C, Messer A, Wilkinson R, Tremoleda JL, Schneider MD, Harding SE, Redwood CS, Clarke K, Nowak K, Monserrat L, Wells D, Marston SB (2011) Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse. J Biol Chem 286(31):27582–27593. doi:10.1074/jbc.M111.252320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song W, Vikhorev PG, Kashyap MN, Rowlands C, Ferenczi MA, Woledge RC, MacLeod K, Marston S, Curtin NA (2013) Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 304(11):H1513–H1524. doi:10.1152/ajpheart.00951.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spoladore R, Maron MS, D’Amato R, Camici PG, Olivotto I (2012) Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence. Eur Heart J 33(14):1724–1733. doi:10.1093/eurheartj/ehs150

    Article  CAS  PubMed  Google Scholar 

  • Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X, Wang D, Ahmad F, Zhou X, Hui R, Song L (2014) Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci 15(6):9302–9313. doi:10.3390/ijms15069302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor RW, Giordano C, Davidson MM, d’Amati G, Bain H, Hayes CM, Leonard H, Barron MJ, Casali C, Santorelli FM, Hirano M, Lightowlers RN, DiMauro S, Turnbull DM (2003) A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 41(10):1786–1796

    Article  CAS  PubMed  Google Scholar 

  • Teare D (1958) Asymmetrical hypertrophy of the heart in young adults. Br Heart J 20(1):1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rieder MJ, Abecasis G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD, Bamshad MJ, Akey JM, Broad GO, Seattle GO, Project NES (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337(6090):64–69. doi:10.1126/science.1219240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP, Seidman JG, Seidman CE (1994) Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5):701–712

    Article  PubMed  Google Scholar 

  • van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119(11):1473–1483. doi:10.1161/CIRCULATIONAHA.108.838672

    Article  PubMed  Google Scholar 

  • Varnava AM, Elliott PM, Baboonian C, Davison F, Davies MJ, McKenna WJ (2001) Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation 104(12):1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Watkins H (2013) Assigning a causal role to genetic variants in hypertrophic cardiomyopathy. Circ Cardiovasc Genet 6(1):2–4. doi:10.1161/CIRCGENETICS.111.000032

    Article  PubMed  Google Scholar 

  • Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE (1995) Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 11(4):434–437. doi:10.1038/ng1295-434

    Article  CAS  PubMed  Google Scholar 

  • Witjas-Paalberends ER, Guclu A, Germans T, Knaapen P, Harms HJ, Vermeer AM, Christiaans I, Wilde AA, Remedios CD, Lammertsma AA, van Rossum AC, Stienen GJ, van Slegtenhorst M, Schinkel AF, Michels M, Ho CY, Poggesi C, van der Velden J (2014) Gene-specific increase in energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc Res 103(2):248–257. doi:10.1093/cvr/cvu127

    Article  CAS  PubMed  Google Scholar 

  • Witt CC, Gerull B, Davies MJ, Centner T, Linke WA, Thierfelder L (2001) Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C. J Biol Chem 276(7):5353–5359. doi:10.1074/jbc.M008691200

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, McMahon CJ, Smith LR, Bersola J, Adesina AM, Breinholt JP, Kearney DL, Dreyer WJ, Denfield SW, Price JF, Grenier M, Kertesz NJ, Clunie SK, Fernbach SD, Southern JF, Berger S, Towbin JA, Bowles KR, Bowles NE (2005) Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation 112(11):1612–1617. doi:10.1161/CIRCULATIONAHA.105.546481

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

KG is supported by a British Heart Foundation Grant (FS/12/40/29712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Gehmlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

J. Cahill, T., Gehmlich, K. (2015). How Cardiac Cytoarchitecture Can Go Wrong: Hypertrophic Cardiomyopathy as a Paradigm for Genetic Disease of the Heart. In: Ehler, E. (eds) Cardiac Cytoarchitecture. Springer, Cham. https://doi.org/10.1007/978-3-319-15263-9_11

Download citation

Publish with us

Policies and ethics