Skip to main content

A Spatiotemporal Mereotopology-Based Theory for Qualitative Description in Assembly Design and Sequence Planning

  • Conference paper
Design Computing and Cognition '14

Abstract

This paper presents a novel qualitative theory in the context of assembly-oriented design, which integrates assembly sequence planning in the early product design stages. Based on a brief literature review of current assembly design approaches and mereotopology-based theories, the authors propose to go beyond by defining their own mereotopological theory, therefore enabling the qualitative description of product-process information and knowledge. The proposed mereotopological theory provides a strong basis for describing spatial entities (product parts) changes over time and space by considering a region-based theory linking spatial, temporal and spatiotemporal dimensions. The main objective of such an approach is to provide a product design description by proactively considering its assembly sequence as early as possible in the product development so as to ensure information and knowledge consistency with preliminary information and later introduce a spatiotemporal reasoning layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demoly F, Deniaud S, Gomes S (2012) Towards an harmonious and integrated management approach for lifecycle planning. In: International conference on advanced production management systems, Greece

    Google Scholar 

  2. Kusiak A, Salustri FA (2007) Computational intelligence in product design engineering: review and trends. IEEE Trans Syst Man Cybern Part C Appl Rev 37(5):766

    Article  Google Scholar 

  3. Zeng Y, Gu P (1999) A science-based approach to product design theory Part II: formulation of design requirements and products. Robot Comput Integr Manuf 15(4):341–352

    Article  MathSciNet  Google Scholar 

  4. Huang GQ, Lee SW, Mak KL (1999) Web-based product and process data modelling in concurrent design for X. Robot Comput Integr Manuf 15:53–63

    Article  Google Scholar 

  5. Helms RW (2002) Product data management as enabler for concurrent engineering. PhD thesis, Technische Universiteit Eindhoven

    Google Scholar 

  6. Sapuan SM, Osman MR, Nukman Y (2006) State of the art of the concurrent engineering technique in the automotive industry. J Eng Des 17(2):143–157

    Article  Google Scholar 

  7. Sider T (2001) Four dimensionalism: an ontology of persistence and time. Clarendon, Oxford

    Book  Google Scholar 

  8. Zha XF, Du H (2002) A PDES/STEP-based model and system for concurrent integrated design and assembly planning. Comput Aided Des 34(14):1087–1110

    Article  Google Scholar 

  9. Mantripragada R (1998) Assembly oriented design: concepts algorithms and computational tools. PhD thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology

    Google Scholar 

  10. Wang L, Keshavarzmanesh S, Feng H-Y, Buchal RO (2008) Assembly process planning and its future in collaborative manufacturing: a review. Int J Adv Manuf Technol 41(1–2):132–144

    Google Scholar 

  11. Kim KY, Yang H, Kim DW (2008) Mereotopological assembly joint information representation for collaborative product design. Robot Comput Integr Manuf 24(6):744–754

    Article  MathSciNet  Google Scholar 

  12. Fenves SJ, Foufou S, Bock C, Sriram RD (2008) CPM: A core model for product data. J Comput Inf Sci Eng 5:238–246

    Article  Google Scholar 

  13. Fenves SJ, Foufou S, Bock C, Sriram RD (2008) CPM2: a core model for product data. J Comput Inf Sci Eng 8(1):1–14

    Google Scholar 

  14. Sudarsan R, Fenves SJ, Sriram RD, Wang F (2005) A product information modeling framework for product lifecycle management. Comput Aided Des 37(13):1399–1411

    Article  Google Scholar 

  15. Lesniewki S (1929) Fundamentals of a new system of the foundations of mathematics. Fundam Math 14:1–81

    Google Scholar 

  16. Demoly F, Matsokis A, Kiritsis D (2012) A mereotopological product relationship description approach for assembly oriented design. Robot Comput Integr Manuf 28(6):681–693

    Article  Google Scholar 

  17. Duntsch I, Wang H, McCloskey S (2001) A relation-algebraic approach to the region connection calculus. Theor Comput Sci 255:63–83

    Article  MathSciNet  Google Scholar 

  18. Varzi AC (1998) Basic problems of mereotopology, Formal ontology in information systems. Ios Press, Italy, pp 29–38

    Google Scholar 

  19. Salustri FA (2002) Mereotopology for product modeling. A new framework for product modeling based on logic. J Des Res 2:2

    Google Scholar 

  20. Salustri FA, Lockledge JC (1999) Towards a formal theory of products including mereology. In: Proceedings of the 12th international conference on engineering design, Munich, pp 1125–1130

    Google Scholar 

  21. Bergson H (1923) Creative evolution. H. Holt and Company, New York

    Google Scholar 

  22. Heidegger M (1962) Being and time. Harper & Row, New York

    Google Scholar 

  23. Sartre J-P (1975) Existentialism is a humanism. In: Kauffman W (ed) Existentialism from Dostoevsky to Startre, rev. edn. Meridian/Penguin, New York, pp 345–369

    Google Scholar 

  24. Le Moigne J-L (1994) La théorie du système général: théorie de la modélisation. Presses universitaires de France, Paris

    Google Scholar 

  25. Rodier X, Saligny L, Lefebvre B, Pouliot J (2010) ToToPI a GIS for understanding urban dynamics based on the OH FET model. In: Fricher B, Crawford J, Koler D (eds) Computer application and quantitative methods in archaeology. Granada, pp 337–349

    Google Scholar 

  26. Del Mondo G, Stell JG, Claramunt C, Thibaud R (2010) A graph model for spatiotemporal evolution. J Univers Comput Sci 16(11):1452–1477

    MATH  Google Scholar 

  27. Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Knowl Eng 20(3):287–303

    Article  MATH  Google Scholar 

  28. Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. Advances in database technology. Springer, Prague, Czech Republic, p 251–268

    Google Scholar 

  29. Hawley K (2004) Temporal parts. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Winter 2010 Edn). http://plato.stanford.edu/archives/win2010/entries/temporal-parts/

  30. Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843

    Article  MATH  Google Scholar 

  31. Demoly F, Yan XT, Eynard B, Rivest L, Gomes S (2011) An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot Comput Integr Manuf 27(1):33–46

    Article  Google Scholar 

  32. Renolen A (1999) Concepts and methods for modelling temporal and spatiotemporal information. Partial fulfilment for the degree “Thesis”, NTNU

    Google Scholar 

  33. Boothroyd G, Dewhurst P, Knight W (2002) Product design for manufacture and assembly, 2nd edn. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  34. Bittner T (2001) Rough sets in spatio-temporal data mining. Temporal, spatial, and spatio-temporal data mining. Springer, Berlin Heidelberg, pp 89–104

    Google Scholar 

  35. Cottingham J (1996) Meditations on first philosophy with selections from the objections and replies. Cambridge University Press, Cambridge

    Google Scholar 

  36. Haddad H (2009) Une approche pour supporter l’analyse qualitative des suites d’actions dans un environnement géographique virtuel et dynamique. Thèse de Doctorat, Département d’informatique, Université Laval

    Google Scholar 

  37. McKinney K, Kim J, Fischer M, Howard C (1996) Interactive 4D-CAD. In: Proceedings of the third congress on computing in civil engineering, Anaheim, pp 383–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Demoly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gruhier, E., Demoly, F., Abboudi, S., Gomes, S. (2015). A Spatiotemporal Mereotopology-Based Theory for Qualitative Description in Assembly Design and Sequence Planning. In: Gero, J., Hanna, S. (eds) Design Computing and Cognition '14. Springer, Cham. https://doi.org/10.1007/978-3-319-14956-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14956-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14955-4

  • Online ISBN: 978-3-319-14956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics