Skip to main content

Molecular Mechanisms of IgE Class Switch Recombination

  • Chapter
  • First Online:
Book cover IgE Antibodies: Generation and Function

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 388))

Abstract

Immunoglobulin (Ig) E is the most tightly regulated of all Ig heavy chain (IgH) isotypes and plays a key role in atopic disease. The gene encoding for IgH in mature B cells consists of a variable region exon—assembled from component gene segments via V(D)J recombination during early B cell development—upstream of a set of IgH constant region CH exons. Upon activation by antigen in peripheral lymphoid organs, B cells can undergo IgH class switch recombination (CSR), a process in which the initially expressed IgH μ constant region exons (Cμ) are deleted and replaced by one of several sets of downstream CH exons (e.g., Cγ, Cε, and Cα). Activation of the IL-4 receptor on B cells, together with other signals, can lead to the replacement of Cμ with Cε resulting in CSR to IgE through a series of molecular events involving irreversible remodeling of the IgH locus. Here, we discuss the molecular mechanisms of CSR and the unique features surrounding the generation of IgE-producing B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audzevich T, Pearce G, Breucha M, Guenal G, Jessberger R (2013) Control of the STAT6-Bcl6 antagonism by SWAP-70 determines IgE production. J Immunol 190(10):4946–4955

    Article  CAS  PubMed  Google Scholar 

  • Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109:S45–S55

    Article  CAS  PubMed  Google Scholar 

  • Basu U, Chaudhuri J, Alpert C, Dutt S, Ranganath S, Li G, Schrum JP, Manis JP, Alt FW (2005) The AID antibody diversification enzyme is regulated by protein kinase a phosphorylation. Nature 438(7067):508–511

    Article  CAS  PubMed  Google Scholar 

  • Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang TT, Myers D, Wasserman CR, Wesemann DR, Januszyk K, Gregory RI, Deng HT, Lima CD, Alt FW (2011) The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144(3):353–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker-Herman S, Lantner F, Shachar I (2002) Id2 negatively regulates B cell differentiation in the spleen. J Immunol 168(11):5507–5513

    Article  CAS  PubMed  Google Scholar 

  • Besmer E, Market E, Papavasiliou FN (2006) The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination. Mol Cell Biol 26(11):4378–4385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhuri J, Alt FW (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4(7):541–552

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW (2007) Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94:157–214

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri J, Khuong C, Alt FW (2004) Replication protein a interacts with AID to promote deamination of somatic hypermutation targets. Nature 430(7003):992–998

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422(6933):726–730

    Article  CAS  PubMed  Google Scholar 

  • Delphin S, Stavnezer J (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med 181 (1):181–192

    Google Scholar 

  • Dempsey LA, Sun H, Hanakahi LA, Maizels N (1999) G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, a role for G-G pairing in immunoglobulin switch recombination. J Biol Chem 274(2):1066–1071

    Article  CAS  PubMed  Google Scholar 

  • Dickerson SK, Market E, Besmer E, Papavasiliou FN (2003) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 197(10):1291–1296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dryer RL, Covey LR (2005) A novel NF-kappa B-regulated site within the human I gamma 1 promoter requires p300 for optimal transcriptional activity. J Immunol 175(7):4499–4507

    Article  CAS  PubMed  Google Scholar 

  • Dudley DD, Chaudhuri J, Bassing CH, Alt FW (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112

    Article  CAS  PubMed  Google Scholar 

  • Erazo A, Kutchukhidze N, Leung M, Christ APG, Urban JF, de Lafaille MAC, Lafaille JJ (2007) Unique maturation program of the IgE response in vivo. Immunity 26(2):191–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geha RS, Jabara HH, Brodeur SR (2003) The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 3(9):721–732

    Article  CAS  PubMed  Google Scholar 

  • Grundbacher FJ (1976) Unusual elevation of ige levels during childhood. Experientia 32(8):1063–1064

    Article  CAS  PubMed  Google Scholar 

  • Hackney JA, Misaghi S, Senger K, Garris C, Sun YL, Lorenzo MN, Zarrin AA (2009) DNA targets of AID: evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol 101:163–189

    Article  CAS  PubMed  Google Scholar 

  • Harris MB, Chang CC, Berton MT, Danial KN, Zhang JD, Kuehner D, Ye BH, Kvatyuk M, Pandolfi PP, Cattoretti G, Dalla-Favera R, Rothman PB (1999) Transcriptional repression of Stat6-dependent interleukin-4-induced genes by Bcl-6: Specific regulation of I epsilon transcription and immunoglobulin E switching. Mol Cell Biol 19(10):7264–7275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris MB, Mostecki J, Rothman PB (2005) Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J Biol Chem 280(13):13114–13121

    Article  CAS  PubMed  Google Scholar 

  • Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A (2006) Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 17(3):173–188

    Article  CAS  PubMed  Google Scholar 

  • Huang FT, Yu KF, Balter BB, Selsing E, Oruc Z, Khamlichi AA, Hsieh CL, Lieber MR (2007) Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain S mu class switch region. Mol Cell Biol 27(16):5921–5932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiguro A, Spirin K, Shiohara M, Tobler A, Norton JD, Rigolet M, Shimbo T, Koeffler HP (1995) Expression of Id2 and Id3 mRNA in human lymphocytes. Leuk Res 19(12):989–996

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259(5097):984–987

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Siebenkotten G, Radbruch A (1994) Frequency of immunoglobulin-E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 179(6):2023–2026

    Article  CAS  PubMed  Google Scholar 

  • Junko T, Kazuo K, Tasuku H (2001) Palindromic but not G-rich sequences are targets of class switch recombination. Int Immunol 13(4):495–505

    Article  Google Scholar 

  • Kashiwada M, Levy DM, McKeag L, Murray K, Schröder AJ, Canfield SM, Traver G, Rothman PB (2010) IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. P Natl Acad Sci USA 107(2):821–826

    Article  CAS  Google Scholar 

  • Kenter AL (2012) AID targeting is dependent on RNA polymerase II pausing. Semin Immunol 24(4):281–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khamlichi AA, Glaudet F, Oruc Z, Denis V, Le Bert M, Cogné M (2004) Immunoglobulin class-switch recombination in mice devoid of any S mu tandem repeat. Blood 103(10):3828–3836

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita K, Tashiro J, Tomita S, Lee CG, Honjo T (1998) Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9(6):849–858

    Article  CAS  PubMed  Google Scholar 

  • Lefranc M-P, Clement O, Kaas Q, Duprat E, Chastellan P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, Lefranc G (2005) IMGT-choreography for immunogenetics and immunoinformatics. Silico Biol 5(1):45–60

    CAS  Google Scholar 

  • Lefranc MP (2001) Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp Clin Immunogenet 18(2):100–116

    Article  CAS  PubMed  Google Scholar 

  • Li GD, White CA, Lam T, Pone EJ, Tran DC, Hayama KL, Zan H, Xu ZM, Casali P (2013) Combinatorial H3K9acS10ph histone modification in IgH locus S regions targets 14-3-3 adaptors and AID to specify antibody class-switch DNA recombination. Cell Rep 5(3):702–714

    Article  PubMed Central  PubMed  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieber MR, Ma YM, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Stavnezer J (1996) Activation of NF-kappa B/Rel by CD40 engagement induces the mouse germline immunoglobulin C gamma 1 promoter. Mol Cell Biol 16(9):4591–4603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linehan LA, Warren WD, Thompson PA, Grusby MJ, Berton MT (1998) STAT6 is required for IL-4-induced germline Ig gene transcription and switch recombination. J Immunol 161(1):302–310

    CAS  PubMed  Google Scholar 

  • Luby TM, Schrader CE, Stavnezer J, Selsing E (2001) The mu switch region tandem repeats are important, but not required, for antibody class switch recombination. J Exp Med 193(2):159–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundgren M, Larsson C, Femino A, Xu MZ, Stavnezer J, Severinson E (1994) Activation of the Ig germ-line gamma-1 promoter—involvement of C/enhancer-binding protein transcription factors and their possible interaction with an NF-IL-4 site. J Immunol 153(7):2983–2995

    CAS  PubMed  Google Scholar 

  • Mandler R, Finkelman FD, Levine AD, Snapper CM (1993) IL-4 induction of IgE class switching by lipopolysaccharide-activated murine B cells occurs predominantly through sequential switching. J Immunol 150(2):407–418

    CAS  PubMed  Google Scholar 

  • Mao C, Stavnezer J (2001) Differential regulation of mouse germline Ig gamma 1 and epsilon promoters by IL-4 and CD40. J Immunol 167(3):1522–1534

    Article  CAS  PubMed  Google Scholar 

  • Max EE, Wakatsuki Y, Neurath MF, Strober W (1995) The role of BSAP in immunoglobulin isotype switching and B cell proliferation. Curr Top Microbiol 194:449–458

    CAS  Google Scholar 

  • Melamed D, Benschop RJ, Cambier JC, Nemazee D (1998) Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Messner B, Stütz AM, Albrecht B, Peiritsch S, Woisetschläger M (1997) Cooperation of binding sites for STAT6 and NF kappa B/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol 159(7):3330–3337

    Google Scholar 

  • Mills FC, Thyphronitis G, Finkelman FD, Max EE (1992) Ig mu-epsilon isotype switch in IL-4-treated human B-lymphoblastoid cells—evidence for a sequential switch. J Immunol 149(3):1075–1085

    CAS  PubMed  Google Scholar 

  • Misaghi S, Garris CS, Sun Y, Nguyen A, Zhang J, Sebrell A, Senger K, Yan D, Lorenzo MN, Heldens S, Lee WP, Xu M, Wu J, DeForge L, Sai T, Dixit VM, Zarrin AA (2010) Increased targeting of donor switch region and IgE in S gamma 1-deficient B Cells. J Immunol 185(1):166–173

    Article  CAS  PubMed  Google Scholar 

  • Misaghi S, Senger K, Sai T, Qu Y, Sun YL, Hamidzadeh K, Nguyen A, Jin ZY, Zhou MJ, Yan DH, Lin WY, Lin ZH, Lorenzo MN, Sebrell A, Ding JB, Xu M, Caplazi P, Austin CD, Balazs M, Roose-Girma M, DeForge L, Warming S, Lee WP, Dixit VM, Zarrin AA (2013) Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proc Natl Acad Sci USA 110(39):15770–15775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Gene Dev 15(8):995–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monroe RJ, Seidl KJ, Gaertner F, Han SH, Chen F, Sekiguchi J, Wang JY, Ferrini R, Davidson L, Kelsoe G, Alt FW (1999) RAG2: GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11(2):201–212

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T (2000) Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68(1):85–88

    Article  CAS  PubMed  Google Scholar 

  • Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y, Yokota Y, Shimizu A (2003) Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302(5653):2137–2140

    Article  CAS  PubMed  Google Scholar 

  • Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6(8):573–583

    Article  CAS  PubMed  Google Scholar 

  • Okazaki IM, Kinoshita K, Muramatsu M, Yoshikawa K, Honjo T (2002) The AID enzyme induces class switch recombination in fibroblasts. Nature 416(6878):340–345

    Article  CAS  PubMed  Google Scholar 

  • Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, San-Martin BR, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC (2010) Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143(1):122–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pham P, Bransteitter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424(6944):103–107

    Article  CAS  PubMed  Google Scholar 

  • Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y, Cogné M (2011) The IgH locus 3′ regulatory region: pulling the strings from behind. Adv Immunol 110:27–70

    Article  CAS  PubMed  Google Scholar 

  • Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4(5):452–456

    Article  CAS  PubMed  Google Scholar 

  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102(5):565–575

    Article  CAS  PubMed  Google Scholar 

  • Rooney S, Chaudhuri J, Alt FW (2004) The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev 200:115–131

    Article  CAS  PubMed  Google Scholar 

  • Rothman P, Chen YY, Lutzker S, Li SC, Stewart V, Coffman R, Alt FW (1990) Structure and expression of germ line immunoglobulin heavy-chain epsilon-transcripts—interleukin-4 plus lipopolysaccharide-directed switching to C-epsilon. Mol Cell Biol 10(4):1672–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy D, Yu KF, Lieber MR (2008) Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28(1):50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schrader CE, Bradley SP, Vardo J, Mochegova SN, Flanagan E, Stavnezer J (2003) Mutations occur in the Ig Smu region but rarely in Sgamma regions prior to class switch recombination. EMBO J 22(21):5893–5903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J (2005) Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202(4):561–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seidl KJ, Bottaro A, Vo A, Zhang J, Davidson L, Alt FW (1998) An expressed neo(r) cassette provides required functions of the I(gamma)2b exon for class switching. Int Immunol 10(11):1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Shen CH, Stavnezer J (1998) Interaction of Stat6 and NF-kappa B: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol 18(6):3395–3404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen CH, Stavnezer J (2001) Activation of the mouse Ig germline epsilon promoter by IL-4 is dependent on AP-1 transcription factors. J Immunol 166(1):411–423

    Article  CAS  PubMed  Google Scholar 

  • Shen HM, Storb U (2004) Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci USA 101(35):12997–13002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinkura R, Tian M, Smith M, Chua K, Fujiwara Y, Alt FW (2003) The influence of transcriptional orientation on endogenous switch region function. Nat Immunol 4(5):435–441

    Article  CAS  PubMed  Google Scholar 

  • Shlomchik MJ, Weisel F (2012) Germinal centers. Immunol Rev 247:5–10

    Article  PubMed  Google Scholar 

  • Stütz AM, Woisetschläger M (1999) Functional synergism of STAT6 with either NF-kappa B or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. J Immunol 163(8):4383–4391

    PubMed  Google Scholar 

  • Sugai M, Gonda H, Kusunoki T, Katakai T, Yokota Y, Shimizu A (2003) Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol 4(1):25–30

    Article  CAS  PubMed  Google Scholar 

  • Thienes CP, DeMonte L, Monticelli S, Busslinger M, Gould HJ, Vercelli D (1997) The transcription factor B cell-specific activator protein (BSAP) enhances both IL-4- and CD40-mediated activation of the human epsilon germline promoter. J Immunol 158(12):5874–5882

    CAS  PubMed  Google Scholar 

  • Tracy RB, Hsieh CL, Lieber MR (2000) Stable RNA/DNA hybrids in the mammalian genome: inducible intermediates in immunoglobulin class switch recombination. Science 288(5468):1058–1061

    Article  CAS  PubMed  Google Scholar 

  • Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GTJ, O’Neill JS, Tamanini F, Turner DJ, Reddy AB (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci USA 110(4):1554–1559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verkaik NS, Esveldt-van Lange REE, van Heemst D, Brüggenwirth HT, Hoeijmakers JHJ, Zdzienicka MZ, van Gent DC (2002) Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells. Eur J Immunol 32(3):701–709

    Article  CAS  PubMed  Google Scholar 

  • Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogné N, Cogné M, Denizot Y (2010) Genomic deletion of the whole IgH 3′ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood 116(11):1895–1898

    Article  CAS  PubMed  Google Scholar 

  • Vuong BQ, Herrick-Reynolds K, Vaidyanathan B, Pucella JN, Ucher AJ, Donghia NM, Gu XW, Nicolas L, Nowak U, Rahman N, Strout MP, Mills KD, Stavnezer J, Chaudhuri J (2013) A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 14(11):1183–U1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, Manis JP, Zhou X, Recher M, Rajewsky K, Notarangelo LD, Alt FW (2011) Immature B cells preferentially switch to IgE with increased direct Smu to Sepsilon recombination. J Exp Med 208(13):2733–2746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wesemann DR, Portuguese AJ, Magee JM, Gallagher MP, Zhou X, Panchakshari RA, Alt FW (2012) Reprogramming IgH isotype-switched B cells to functional-grade induced pluripotent stem cells. Proc Natl Acad Sci USA 109(34):13745–13750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willmann KL, Milosevic S, Pauklin S, Schmitz KM, Rangam G, Simon MT, Maslen S, Skehel M, Robert I, Heyer V, Schiavo E, Reina-San-Martin B, Petersen-Mahrt SK (2012) A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J Exp Med 209(11):2099–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu LC, Zarrin AA (2014) The production and regulation of IgE by the immune system. Nat Rev Immunol 14(4):247–259

    Article  CAS  PubMed  Google Scholar 

  • Xiong HZ, Dolpady J, Wabl M, de Lafaille MAC, Lafaille JJ (2012) Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med 209(2):353–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Zan H, Pone EJ, Mai T, Casali P (2012) Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 12(7):517–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue KM, Rada C, Neuberger MS (2006) The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2(−/−) ung(−/−) mice. J Exp Med 203(9):2085–2094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, Gumaste S, Geyer M, Zarrin AA, Manis JP, Rajewsky K, Alt FW (2007) IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449(7161):478–U479

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Matsuoka M, Usuda S, Mori A, Ishizaka K, Sakano H (1990) Immunoglobulin switch circular DNA in the mouse infected with nippostrongylus-brasiliensis—evidence for successive class switching from mu to epsilon via gamma-1. Proc Natl Acad Sci USA 87(20):7829–7833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu KF, Chedin F, Hsieh CL, Wilson TE, Lieber MR (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 4(5):442–451

    Article  CAS  PubMed  Google Scholar 

  • Yu KF, Lieber MR (2003) Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair 2(11):1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Zarrin AA, Alt FW, Chaudhuri J, Stokes N, Kaushal D, Du Pasquier L, Tian M (2004) An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 5(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW (2005) Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci USA 102(7):2466–2470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Bottaro A, Li S, Stewart V, Alt FW (1993) A selective defect in IgG2b switching as a result of targeted mutation of the I-gamma-2b promoter and exon. EMBO J 12(9):3529–3537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Franklin A, Boboila C, McQuay A, Gallagher MP, Manis JP, Khamlichi AA, Alt FW (2010) Downstream class switching leads to IgE antibody production by B lymphocytes lacking IgM switch regions. Proc Natl Acad Sci USA 107(7):3040–3045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

D.R.W. is supported by NIH grants AI089972 and AI113217, by the Mucosal Immunology Studies Team, and holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane R. Wesemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tong, P., Wesemann, D.R. (2015). Molecular Mechanisms of IgE Class Switch Recombination. In: Lafaille, J., Curotto de Lafaille, M. (eds) IgE Antibodies: Generation and Function. Current Topics in Microbiology and Immunology, vol 388. Springer, Cham. https://doi.org/10.1007/978-3-319-13725-4_2

Download citation

Publish with us

Policies and ethics