Skip to main content

The Role of HSP70 and Its Co-chaperones in Protein Misfolding, Aggregation and Disease

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Waza M, Tokui K et al (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27:5115–5126

    CAS  PubMed  Google Scholar 

  • Aechan D, Xu Y, Stokes DL et al (2007) Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Invest 87:40–48

    Google Scholar 

  • Alberti S, Demand J, Esser C et al (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 277:45920–45927

    CAS  PubMed  Google Scholar 

  • Alberti S, Bohse K, Arndt V et al (2004) The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 15:4003–4010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Ramahi I, Lam YC, Chen HK et al (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281:26714–224

    CAS  PubMed  Google Scholar 

  • Anderson JF, Siller E, Barral JM (2010) The SACS repeating region (SRR): a novel HSP90-related supra-domain associated with neurodegeneration. J Mol Biol 400:665–674

    CAS  PubMed  Google Scholar 

  • Anttonen AK, Mahjneh I, Hamalainen RH et al (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311

    CAS  PubMed  Google Scholar 

  • Anttonen AK, Siintola E, Tranebjaerg L et al (2008) Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco-Sjögren syndrome. Eur J Hum Genet 16:961–969

    CAS  PubMed  Google Scholar 

  • Aquilá M, Bevilacqua D, McCulley et al (2014) Hsp90 inhibition protects against inherited retinal degeneration. Hum Mol Gen 23:2164–2175

    Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES et al (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    CAS  PubMed  Google Scholar 

  • Bailey CK, Andriola IF, Kampinga HH et al (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11:515–523

    CAS  PubMed  Google Scholar 

  • Barral JM, Broadley SA, Schaffar G et al (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15:17–29

    CAS  PubMed  Google Scholar 

  • Bione S, D’Adamo P, Maestrini E et al (1996) A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 12:385–389

    CAS  PubMed  Google Scholar 

  • Blumen SC, Astord S, Robin V et al (2012) A rare recessive distal hereditary motor neuropathy with HSJ1 chaperone mutation. Ann Neurol 71:509–519

    CAS  PubMed  Google Scholar 

  • Bonini NM (2002) Chaperoning brain degeneration. Proc Natl Acad Sci U S A 99(Suppl 4):16407–16411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouchard JP, Richter A, Melancon SB et al (2000) Autosomal recessive spastic ataxia (Charlevoix-Saguenay). In: Klockether T (ed) Handbook of Ataxia disorders. Marcel Dekker, New York, pp 312–324

    Google Scholar 

  • Bouhlal Y, Amouri R, El Euch-Fayeche G et al (2011) Autosomal recessive spastic ataxia of Charlevoix-Saguenay: an overview. Parkinsonism Relat Disord 17:418–422

    PubMed  Google Scholar 

  • Brandner K, Mick DU, Frazier AE et al (2005) Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. Mol Biol Cell 16:5202–5214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    CAS  PubMed  Google Scholar 

  • Burnett B, Li F, Pittman RN (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Gen 12:3195–3205

    CAS  PubMed  Google Scholar 

  • Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280:23869–23875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM et al (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338–10347

    CAS  PubMed  Google Scholar 

  • Chan HY, Warrick JM, Gray-Board et al (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811–2820

    Google Scholar 

  • Chang W-H, Tien C-L, Chen T-J et al (2009) Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado-Joseph disease. Neurosci Lett 454:152–156

    CAS  PubMed  Google Scholar 

  • Chapple JP, Cheetham ME (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 278:19087–19094

    CAS  PubMed  Google Scholar 

  • Chapple JP, van der Spuy J, Poopalasundaram S et al (2004) Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the HSP70 chaperone machine to the ubiquitin-proteasome system? Biochem Soc Trans 32:640–642

    CAS  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi JY, Ryu JH, Kim HS et al (2007) Co-chaperone CHIP promotes aggregation of ataxin-1. Mol Cell Neurosci 34:69–79

    CAS  PubMed  Google Scholar 

  • Chuang JZ, Zhou H, Zhu M et al (2002) Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently. J Biol Chem 277:19831–19838

    CAS  PubMed  Google Scholar 

  • Chung KT, Shen Y, Hendershot LM (2002) BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 277:47557–47563

    CAS  PubMed  Google Scholar 

  • Claypool SM, McCaffery JM, Koehler CM (2006) Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J Cell Biol 174:379–390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J et al (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    CAS  PubMed  Google Scholar 

  • Couthouis J, Raphael AR, Siskind C et al (2014) Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy. Neuromuscul Disord 24:431–435

    PubMed  Google Scholar 

  • Cudkowicz ME, Shefner JM, Simpson E et al (2008) Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve 38:837–844

    CAS  PubMed  Google Scholar 

  • Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R et al (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    CAS  PubMed  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B et al (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    CAS  PubMed  Google Scholar 

  • Cummings CJ, Sun Y, Opal P et al (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    CAS  PubMed  Google Scholar 

  • Cushman-Nick M, Bonini NM, Shorter J (2013) Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLoS Genet 9:e1003781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davey KM, Parboosingh JS, McLeod DR et al (2006) Mutation of DNAJC19, a human homolog of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet 43:385–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577

    CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    CAS  PubMed  Google Scholar 

  • D’Silva PD, Schilke B, Walter W et al (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci U S A 100:13839–13844

    PubMed Central  PubMed  Google Scholar 

  • Duchniewicz M, Germaniuk A, Westermann B et al (1999) Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 19:8201–8210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudek J, Cheng IF, Balleininger M et al (2013) Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res 11:806–819

    CAS  PubMed  Google Scholar 

  • Duennwald ML, Echeverria A, Shorter J (2012) Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 10:e1001346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M et al (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engert JC, Berube P, Mercier J et al (2000) ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Gen 24:120–125

    CAS  Google Scholar 

  • Eriguchi M, Mizuta H, Kurohara K et al (2008) Identification of a new homozygous frameshift insertion mutation in the SIL1 gene in 3 Japanese patients with Marinesco-Sjögren syndrome. J Neurol Sci 270:197–200

    CAS  PubMed  Google Scholar 

  • Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Diff 14:1086–1094

    CAS  Google Scholar 

  • Evgrafov OV, Mersiyanova I, Irobi J et al (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36:602–606

    CAS  PubMed  Google Scholar 

  • Ezgu F, Krejci P, Li S et al (2014) Phenotype-genotype correlations in patients with Marinesco-Sjögren syndrome. Clin Genet 86:74–84

    CAS  PubMed  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    CAS  PubMed  Google Scholar 

  • Fujikake N, Nagai Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao XC, Zhou CJ, Zhou ZR et al (2011) Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3. PLoS One 6:e19763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gebert N, Joshi AS, Kutik S et al (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19:2133–2139

    CAS  PubMed  Google Scholar 

  • Girard M, Lariviere R, Parfitt DA et al (2012) Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Nat Acad Sci U S A 109:1661–1666

    CAS  Google Scholar 

  • Greer PL, Hanayama R, Bloodgood BL et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grynberg M, Erlandsen H, Godzik A (2003) HEPN: a common domain in bacterial drug resistance and human neurodegenerative proteins. Trends Bioch Sci 28:224–226

    CAS  Google Scholar 

  • Hageman J, Rujano MA, van Waarde MAWH et al (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37:355–369

    CAS  PubMed  Google Scholar 

  • Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansson O, Nylandsted J, Castilho RF et al (2003) Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res 970:47–57

    CAS  PubMed  Google Scholar 

  • Hargitai J, Lewis H, Boros I et al (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695

    CAS  PubMed  Google Scholar 

  • Harms MB, Sommerville RB, Allred P et al (2012) Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 71:407–416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Miess A, Stromer T et al (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868

    CAS  PubMed  Google Scholar 

  • Hayashi M, Imanaka-Yoshida K, Yoshida T et al (2006) A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 12:128–132

    CAS  PubMed  Google Scholar 

  • He Q (2010) Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes. Am J Physiol Heart Circ Physiol 299:H210–229

    CAS  PubMed  Google Scholar 

  • Hidalgo-de-Quintana J, Evans RJ, Cheetham ME et al (2008) The Leber congenital amaurosis protein AIPL1 functions as part of a chaperone heterocomplex. Invest Ophthalmol Vis Sci 49:2878–2887

    PubMed Central  PubMed  Google Scholar 

  • Hipp MS, Patel CN, Bersuker K et al (2012) Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J Cell Biol 96:573–587

    Google Scholar 

  • Houlden H, Laura M, Wavrant-De Vrieze F et al (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71:1660–1668

    CAS  PubMed  Google Scholar 

  • Howarth JL, Kelly S, Keasey MP et al (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther 15:1100–1105

    CAS  PubMed  Google Scholar 

  • Howarth JL, Glover CP, Uney JB (2009) HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J Neurochem 108:945–951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howes J, Shimizu Y, Feige MJ, Hendershot LM (2012) C-terminal mutations destabilize SIL1/BAP and can cause Marinesco-Sjögren syndrome. J Biol Chem 287:8552–8560

    CAS  PubMed Central  PubMed  Google Scholar 

  • HUGO Gene Nomenclature Committee (HGNC) (2014) http://www.genenames.org/genefamilies/HSP. Accessed 23 April 2014.

  • Iosefson O, Levy R, Marom M et al (2007) The Pam18/Tim14–Pam16/Tim16 complex of the mitochondrial translocation motor: the formation of a stable complex from marginally stable proteins. Protein Sci 16:316–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irobi J, Almeida-Souza L, Asselbergh B et al (2010) Mutant HSPB8 causes motor neuron-specific neurite degeneration. Hum Mol Genet 19:3254–3265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jana NR (2012) Understanding the pathogenesis of Angelman syndrome through animal models. Neur Plas 2012:710943

    Google Scholar 

  • Jana NR, Nukina N (2005) BAG-1 associates with the polyglutamine-expanded huntingtin aggregates. Neurosci Lett 378:171–175

    CAS  PubMed  Google Scholar 

  • Jana NR, Tanaka M, Wang G et al (2000) Polyglutamine length-dependent interaction of Hsp40 and HSP70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018

    CAS  PubMed  Google Scholar 

  • Jana NR, Dikshit P, Goswami A et al (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280:11635–11640

    CAS  PubMed  Google Scholar 

  • Jiang J, Prasad K, Lafer EM et al (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20:513–524

    CAS  PubMed  Google Scholar 

  • Kamionka M, Feigon J (2004) Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction. Protein Sci 13:2370–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karim MA, Parsian AJ, Cleves MA et al (2006) A novel mutation in BAP/SIL1 gene causes Marinesco-Sjögren syndrome in an extended pedigree. Clin Genet 70:420–423

    CAS  PubMed  Google Scholar 

  • Katsanis N, Beales PL, Woods MO et al (2000) Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 26:67–70

    CAS  PubMed  Google Scholar 

  • Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840

    CAS  PubMed  Google Scholar 

  • Kieran D, Kalmar B, Dick JR et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    CAS  PubMed  Google Scholar 

  • Kijima K, Numakura C, Goto T et al (2005) Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J Hum Genet 50:473–476

    PubMed  Google Scholar 

  • Kim S, Nollen EA, Kitagawa K et al (2002) Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4:826–831

    CAS  PubMed  Google Scholar 

  • Kim JC, Ou YY, Badano JL et al (2005) MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci 118:1007–1020

    CAS  PubMed  Google Scholar 

  • Kim YS, Alarcon SV, Lee S (2009) Update on HSP90 inhibitors in clinical trial. Curr Top Med Chem 9:1479–1492

    CAS  PubMed  Google Scholar 

  • Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kume A, Li M et al (2000) Chaperones HSP70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772–8778

    CAS  PubMed  Google Scholar 

  • Kolandaivelu S, Huang J, Hurley JB et al (2009) AIPL1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6) and is essential for its proper assembly. J Biol Chem 284:30853–30861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolb SJ, Snyder PJ, Poi EJ et al (2010) Mutant small heat shock protein B3 causes in motor neuropathy. Neurology 74:502–506

    CAS  PubMed  Google Scholar 

  • Kozlov G, Denisov AY, Girard M et al (2011) Structural basis of defects in the SACS HEPN domain responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). J Biol Chem 286:20407–20412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo Y, Ren S, Lao U et al (2013) Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 4:e833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labbadia J1, Novoselov SS, Bett JS et al (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135:1180–1196

    PubMed Central  PubMed  Google Scholar 

  • Lajoie P, Snapp EL (2010) Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 5:e15245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lanka V, Wieland S, Barber J et al (2009) Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 18:1907–1918

    CAS  PubMed  Google Scholar 

  • Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leitman J, Hartl FU, Lederkremer GZ (2013) Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Comm 4:2753

    Google Scholar 

  • Li Z, Hartl FU, Bracher A (2013) Structure and Function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struc Mol Biol 20:929–935

    CAS  Google Scholar 

  • Litt M, Kramer P, LaMorticella DM et al (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474

    CAS  PubMed  Google Scholar 

  • Lo JF, Hayashi M, Woo-Kim S et al (2004) Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2) tid, is critical for early embryonic development and cell survival. Mol Cell Biol 24:2226–2236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu B (2009) Mitochondrial dynamics and neurodegeneration. Curr Neurol Neurosci Rep 9:212–219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275:4613–4617

    CAS  PubMed  Google Scholar 

  • Mackay DS, Andley UP, Shiels A (2003) Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 11:784–793

    CAS  PubMed  Google Scholar 

  • Malik B, Nirmalananthan N, Gray AL et al (2013) Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 136:926–943

    PubMed Central  PubMed  Google Scholar 

  • Martin N, Jaubert J, Gounon P et al (2002) A missense mutation in Tbce causes progressive motor neuronopathy in mice. Nat Genet 32:443–447

    CAS  PubMed  Google Scholar 

  • Martin MH, Bouchard JP, Sylvain M et al (2007) Autosomal recessive spastic ataxia of Charlevoix-Saguenay: a report of MR imaging in 5 patients. AJNR Am J Neurorad 28:1606–1608

    Google Scholar 

  • Mazurová S, TesaÅ™ová M, Magner M et al (2013) Novel mutations in the TAZ gene in patients with Barth syndrome. Prague Med Rep 114:139–153

    PubMed  Google Scholar 

  • McCampbell A, Taylor JP, Taye AA et al (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9:2197–2202

    CAS  PubMed  Google Scholar 

  • Miller VM, Nelson RF, Gouvion CM et al (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161

    CAS  PubMed  Google Scholar 

  • Mitra S, Tsvetkov AS, Finkbeiner S (2009) Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in Huntington disease. J Biol Chem 284:4398–4403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W et al (2003) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mokranjac D, Bourenkov G, Hell K et al (2006) Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J 25:4675–4685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    CAS  PubMed  Google Scholar 

  • Mueller TD, Feigon J (2002) Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions. J Mol Biol 319:1243–1255

    CAS  PubMed  Google Scholar 

  • Neef DW, Turski ML, Thiele DJ (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in Neurodegenerative disease. PLoS Biol 8:e1000291

    PubMed Central  PubMed  Google Scholar 

  • Ng AC, Baird SD, Screaton RA (2014) Essential role of TID1 in maintaining mitochondrial membrane potential homogeneity and mitochondrial DNA integrity. Mol Cell Biol 34:1427–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norton N, Li D, Rieder MJ et al (2011) Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am J Hum Genet 88:273–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novoselov SS, Mustill WJ, Gray AL et al (2013) Molecular chaperone mediated late-stage neuroprotection in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis PLoS One 8:e73944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nucifora FC Jr, Sasaki M, Peters MF et al (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291:2423–2428

    CAS  PubMed  Google Scholar 

  • Ojala T, Polinati P, Manninen T et al (2012) New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res 72:432–437

    CAS  PubMed  Google Scholar 

  • Ouyang Y, Takiyama Y, Sakoe K et al (2006) SACS-related ataxia (ARSACS): expanding the genotype upstream from the gigantic exon. Neurol 66:1103–1104

    CAS  Google Scholar 

  • Parfitt DA, Michael GJ, Vermeulen EG et al (2009) The ataxia protein SACS is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Gen 18:1556–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parfitt DA, Aguila M, McCulley CH et al (2014) The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death Dis 5:e1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parvari R, Hershkovitz E, Grossman N et al (2002) Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 32:448–452

    CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the HSP90 molecular chaperone machinery. Ann Rev Bioch 75:271–294

    CAS  Google Scholar 

  • Porter JR, Fritz CC, Depew KM (2010) Discovery and development of HSP90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol 14:412–420

    CAS  PubMed  Google Scholar 

  • Pyle A, Griffin H, Yu-Wai-Man P et al (2012) Prominent sensorimotor neuropathy due to SACS mutations revealed by whole-exome sequencing. Arch Neurol 69:1351–1354

    PubMed  Google Scholar 

  • Romano A, Tessa A, Barca A et al (2013) Comparative analysis and functional mapping of SACS mutations reveal novel insights into SACS repeated architecture. Hum Mut 34:525–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898

    CAS  PubMed  Google Scholar 

  • Ross AJ, May-Simera H, Eichers ER et al (2005) Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37:1135–1140

    CAS  PubMed  Google Scholar 

  • Rujano MA, Kaminga HH, Salomons FA (2000) Modulation of polyglutamine inclusion formation by the HSP70 chaperone machine. Exp Cell Res 313:3568–3578

    Google Scholar 

  • Sakahira H, Breuer P, Hayer-Hartl MK et al (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci U S A 99(Suppl 4):16412–16418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarparanta J, Jonson PH, Golzio C et al (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44:450–455, S1–S2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Hayashi YK, Oya Y et al (2013) DNAJB6 myopathy in an Asian cohort and cytoplasmic/nuclear inclusions. Neuromuscul Disord 23:269–276

    PubMed  Google Scholar 

  • Satyal SH, Schmidt E, Kitagawa K et al (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97:5750–5755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffar G, Breuer P, Boteva R et al (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95–105

    CAS  PubMed  Google Scholar 

  • Schipper-Krom S, Juenemann K, Reits EA (2012) The ubiquitin-proteasome system in Huntington’s disease: are are proteasomes impaired, initiators of disease, or coming to the Rescuerescue? Biochem Res Int 2012:837015

    PubMed Central  PubMed  Google Scholar 

  • Schusdziarra C, Blamowska M, Azem A et al (2013) Methylation-controlled J-protein MCJ acts in the import of proteins into human mitochondria. Hum Mol Genet 22:1348–1357

    CAS  PubMed  Google Scholar 

  • Schwahn U, Lenzner S, Dong J et al (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    CAS  PubMed  Google Scholar 

  • Schwarz N, Hardcastle AJ, Cheetham ME (2012) Arl3 and RP2 mediated assembly and traffic of membrane associated cilia proteins. Vision Res 75:2–4

    CAS  PubMed  Google Scholar 

  • Senderek J, Krieger M, Stendel C et al (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314

    CAS  PubMed  Google Scholar 

  • Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with HSP70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6:e26319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha D, Srivastava S, Krishna L et al (2014) Unraveling the intricate organization of mammalian mitochondrial presequence translocases: existence of multiple translocases for maintenance of mitochondrial function. Mol Cell Biol 34:1757–1775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sohocki MM, Bowne SJ, Sullivan LS et al (2000) Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet 24:79–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soti C, Nagy E, Giricz Z et al (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sroka K, Voigt A, Deeg S et al (2009) BAG1 modulated huntingtin toxicity, aggregation, degradation, and subcellular distribution. J Neurochem 111:801–807

    CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    CAS  PubMed  Google Scholar 

  • Stenoien DL, Cummings CJ, Adams HP et al (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8:731–741

    CAS  PubMed  Google Scholar 

  • Stone DL, Slavotinek A, Bouffard GG et al (2000) Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat Genet 25:79–82

    CAS  PubMed  Google Scholar 

  • Synofzik M, Soehn AS, Gburek-Augustat J et al (2013) Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis 8:41

    PubMed Central  PubMed  Google Scholar 

  • Takahashi T et al (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17:345–356

    CAS  PubMed  Google Scholar 

  • Takahata T, Yamada K, Yamada Y et al (2010) Novel mutations in the SIL1 gene in a Japanese pedigree with the Marinesco-Sjögren syndrome. J Hum Genet 55:142–146

    PubMed  Google Scholar 

  • Tang B, Liu X, Zhao G et al (2005a) Mutation analysis of the small heat shock protein 27 gene in Chinese patients with Charcot-Marie-Tooth disease. Arch Neurol 62:1201–1207

    Google Scholar 

  • Tang B, Zhao G, Luo W et al (2005b) Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L. Hum Genet 116:222–224

    CAS  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    CAS  PubMed  Google Scholar 

  • Taylor SW, Fahy E, Zhang B et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    CAS  PubMed  Google Scholar 

  • Tokui K, Adachi H, Waza M et al (2009) 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Hum Mol Genet 18:898–910

    CAS  PubMed  Google Scholar 

  • Truscott KN, Voos W, Frazier AE et al (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 163:707–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermeer S, Meijer RP, Pijl BJ et al (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogen 9:207–214

    Google Scholar 

  • Vicart P, Caron A, Guicheney P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    CAS  PubMed  Google Scholar 

  • Visy J, Fitos I, Mády G et al (2002) Enantioselective plasma protein binding of bimoclomol. Chirality 14:638–642

    CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    CAS  PubMed  Google Scholar 

  • Wacker JL, Huang SY, Steele AD et al (2009) Loss of HSP70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J Neurosci 29:9104–9114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang AM, Miyata Y, Klinedinst S et al (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9:112–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Google Scholar 

  • Waza M, Adachi H, Katsuno M et al (2005) 17-AAG, an HSP90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088–1095

    CAS  PubMed  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J et al (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15:1058–1064

    CAS  PubMed  Google Scholar 

  • Williams AJ, Knutson TM, Colomer Gould VF et al (2009) In vivo suppression of polyglutamine neurotoxicity by C-terminus of HSP70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol Dis 33:342–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyttenbach A, Carmichael J, Swartz J et al (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington’s disease. Proc Natl Acad Sci U S A 97:2898–2903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J et al (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151

    CAS  PubMed  Google Scholar 

  • Xu A, Malhotra M, Ren M (2006) The enzymatic function of tafazzin J Biol Chem 281:39217–3922

    CAS  PubMed  Google Scholar 

  • Zhao L, Longo-Guess C, Harris BS et al (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    CAS  PubMed  Google Scholar 

  • Zourlidou A, Gidalevitz T, Kristiansen M et al (2007) Hsp27 overexpression in the R6/2 mouse model of Huntington’s disease: chronic neurodegeneration does not induce Hsp27 activation. Hum Mol Genet 16:1078–1090

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The text in this chapter contains sections reproduced with kind permission from Springer Science + Business Media: Networking of Chaperones by Co-chaperones; Chap. 11: The role of Hsp70 and its co-chaperones in protein misfolding, aggregation and disease; 2007; page 122–127; Jacqueline van der Spuy, Michael E, Cheetham and J. Paul Chapple.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Paul Chapple or Jacqueline van der Spuy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duncan, E., Cheetham, M., Chapple, J., van der Spuy, J. (2015). The Role of HSP70 and Its Co-chaperones in Protein Misfolding, Aggregation and Disease. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_12

Download citation

Publish with us

Policies and ethics