Skip to main content

Effect of Vegetation on Stability of Soil Slopes: Numerical Aspect

  • Chapter
Book cover Recent Advances in Modeling Landslides and Debris Flows

Abstract

Soil bioengineering makes use of living plants to enhance soil stability against erosion and failure. Its practice is strongly dominated by empiricism. Recently much effort has been made towards quantifying soil bioengineering measures. This paper provides a critical review of the numerical modelling of some soil bioengineering measures. We discuss the application of the numerical methods including the finite element method and the limit equilibrium method for the composite of soil-plant root. A detailed review of the mechanical and hydrological models for the complex interaction between soil, plant, water and atmosphere is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borja, R.I., White, J.A., Liu, X.Y., Wu, W.: Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. Int. J. Numer. Anal. Meth. Geomech. 36, 236–248 (2012)

    Article  Google Scholar 

  2. Sung, K.J., Yavuz, C.M., Drew, M.C.: Heat and mass transfer in the vadose zone with plant roots. Journal of Contaminant Hydrology 57, 99–127 (2002)

    Article  Google Scholar 

  3. Bergkamp, G.: A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. Catena 33, 201–220 (1998)

    Article  Google Scholar 

  4. Puigdefábregas, J.: The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms 30, 133–147 (2005)

    Article  Google Scholar 

  5. Yu, H.S., Salgado, R., Sloan, S.W., Kim, J.M.: Limit analysis versus limit equilibrium for slope stability. J Geotech. Geoenviron. Eng. 124, 1–11 (1998)

    Article  Google Scholar 

  6. Baum, R.L., Savage, W.Z., Godt, J.W.: TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. U.S. Geological Survey Open-File Report, 2008-1159, 75 p. (2008)

    Google Scholar 

  7. Fan, C.C., Lai, Y.F.: Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil, 1–13 (2014), doi:10.1007/s11104-012-1569-9

    Google Scholar 

  8. Docker, B.B., Hubble, T.C.T.: Modelling the distribution of enhanced soil shear strength beneath riparian trees of south-eastern Australia. Ecological Engineering 35, 921–934 (2009)

    Article  Google Scholar 

  9. Rai, R., Shrivastva, B.K.: Effect of grass on soil reinforcement and shear strength. Ground Improvement 165, 127–130 (2012)

    Article  Google Scholar 

  10. Mao, Z., Bourrier, F., Stokes, A., Fourcaud, T.: Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems. Ecological Modelling 273, 11–22 (2014)

    Article  Google Scholar 

  11. Balaguru, N., Shah, S.P.: Fiber reinforced cement composites. McGraw-Hill, New York (1982)

    Google Scholar 

  12. Matthews, C., Farook, Z.: Slope stability analysis – limit equilibrium or the finite element method? Ground Engineering, 22–28 (May 2014)

    Google Scholar 

  13. Eubanks, C.E., Meadows, D., Cremer, J.S.: A Soil Bioengineering Guide for Streambank and Lakeshore Stabilization FS-683. ch. 5, Soil Bioengineering Techniques, U.S. Department of Agriculture Forest Service (2002)

    Google Scholar 

  14. The Federal Interagency Stream Restoration Working Group: Stream Corridor Restoration Handbook. USDA (1998)

    Google Scholar 

  15. National Engineering Handbook, Technical Supplement 14M, Vegetated Rock Walls, USDA (2007)

    Google Scholar 

  16. Waldron, L.J.: Shear resistance of root-permeated homogeneous and stratified soil. Soil Science Society of America Journal 41, 843–849 (1977)

    Article  Google Scholar 

  17. Wu, T.H.: Investigation of landslides on Prince of Wales Island, Alaska. Geotechnical Engineering Report 5, Ohio State University, Department of Civil Engineering (1976)

    Google Scholar 

  18. Wu, T.H., McKinnell, W.P., Swanston, D.N.: Strength of tree roots and landslides on Prince of Wales Island, Alaska. Canadian Geotechnical Journal 114(12), 19–33 (1979)

    Article  Google Scholar 

  19. Gray, D.H., Ohashi, H.: Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering 109(3), 335–353 (1983)

    Article  Google Scholar 

  20. Brenner, R.P.: A hydrological model study of a forested and cutover slope. Hydrological Sciences 18, 125–144 (1973)

    Article  Google Scholar 

  21. Pollen, N., Simon, A.: Estimating mechanical effects of riparian vegetation on streambank stability using a fiber bundle model. Water Resources Research 41(W07025) (2005), doi:10.1029/2004WR003801

    Google Scholar 

  22. Pollen, N.: Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69, 197–205 (2007), doi:10.1016/j.catena.2006.05.004

    Article  Google Scholar 

  23. Pollen, N., Simon, A., Jaeger, K., Wohl, E.: Destabilization of streambank by removal of invasive species in Canyon de Chelly national monument, Arizona. Geomorphology 103, 363–374 (2009)

    Article  Google Scholar 

  24. Schwarz, M., Lehmann, P., Or, D.: Quantifying lateral root reinforcement in steep slopes-from a bundle of roots to tree stands. Earth Surface Processes and Landforms 35, 354–367 (2010)

    Article  Google Scholar 

  25. Schwarz, M., Cohen, D., Or, D.: Spatial characterization of root reinforcement at stand scale: Theory and case study. Geomorphology 171-172, 190–200 (2012)

    Article  Google Scholar 

  26. Schwarz, M., Giadrossich, F., Cohen, D.: Modeling root reinforcement using a root-failure Weibull survival function. Hydrology and Earth System Sciences 17, 4367–4377 (2013), http://www.hydrol-earth-syst-sci.net/17/4367/2013/ , doi:10.5194/hess-17-4367-2013

    Article  Google Scholar 

  27. Dupuy, L., Gregory, P.J., Bengough, A.G.: Root growth models: towards a new generation of continuous approaches. Journal of Experimental Botany 61, 2131–2143 (2010), doi:10.1093/jxb/erp389

    Google Scholar 

  28. Dupuy, L., Vignes, M., Mckenzie, B.M., White, P.J.: The dynamics of root meristem distribution in the soil. Plant, Cell and Environment 33, 358–369 (2010), doi:10.1111/j.1365-3040.2009.02081

    Article  Google Scholar 

  29. Bourrier, F., Kneib, F., Chareyre, B., Fourcaud, T.: Discrete modeling of granular soils reinforcement by plant roots. Ecological Engineering (2013), http://dx.doi.org/10.1016/j.ecoleng.2013.05.002

  30. Smilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtes, L., Sibille, L., Stransky, J., Thoeni, K.: Yade Documentation, 1st edn. (2010), The Yade Project: http://yade-dem.org.doc

  31. Monteith, J.L.: Evaporation and environment. Symposia of the Society for Experimental Biology 19, 205–234 (1965)

    Google Scholar 

  32. Penman, H.L.: Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A 193, 120–145 (1948)

    Article  Google Scholar 

  33. Allen, R.G., Pereira, L.S., Raes, D., Smith, M.: Crop Evapotranspiration- Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Number 6541. FAO, Rome 300 (1998)

    Google Scholar 

  34. Van den Honert, T.H.: Water transport as a catenary process. Faraday Society Discussion 3, 146–153 (1948)

    Article  Google Scholar 

  35. Gardner, W.R.: Dynamic aspects of water availability to plants. Soil Science 89(2), 228–232 (1960)

    Article  Google Scholar 

  36. Feddes, R.A., Bresler, E., Neuman, S.P.: Field tests of a modified numerical model for water uptake by plant roots systems. Water Resources Research 10, 1199–1206 (1974)

    Article  Google Scholar 

  37. Wilkinson, P.L., Anderson, M.G., Lloyd, D.M.: An integrated hydrological model for rain-induced landslide prediction. Earth Surface Processes and Landforms 27, 1285–1297 (2002)

    Article  Google Scholar 

  38. Wilkinson, P.L., Anderson, M.G., Lloyd, D.M., Renaud, J.-P.: Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environmental Modelling & Software 17, 333–344 (2002)

    Article  Google Scholar 

  39. Janbu, N.: Application of composite slip surface for stability analysis. In: Proceedings of the European Conference on the Stability of Earth Slopes, Stockholm, vol. 3, pp. 43–49 (1954)

    Google Scholar 

  40. Greenwood, J.R.: SLIP4EX - a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotechnical and Geological Engineering 24, 449–465 (2006)

    Article  Google Scholar 

  41. Fatahi, B.: Modelling of inuence of matric suction induced by native vegetation on sub-soil improvement. PhD thesis, University of Wollongong, Australia (2007)

    Google Scholar 

  42. Fatahi, B., Khabbaz, H., Indraratna, B.: Parametric studies on bioengineering effects of tree-root based suction on ground behaviour. Ecological Engineering 35, 1415–1426 (2009)

    Article  Google Scholar 

  43. Fatahi, B., Khabbaz, H., Indraratna, B.: Bioengineering ground improvement considering root water uptake model. Ecological Engineering 36, 222–229 (2010)

    Article  Google Scholar 

  44. Wan, Y., Xue, Q., Zhao, Y.: Mechanism study and numerical simulation on vegetation affecting the slope stability. Electronic Journal of Geotechnical Engineers 16, 741–751 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, W. et al. (2015). Effect of Vegetation on Stability of Soil Slopes: Numerical Aspect. In: Wu, W. (eds) Recent Advances in Modeling Landslides and Debris Flows. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11053-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11053-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11052-3

  • Online ISBN: 978-3-319-11053-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics