Skip to main content

Anatomy and Physiology of Adipose Tissue

  • Chapter
  • First Online:
Multidisciplinary Approach to Obesity

Abstract

Adipose tissue is a specialized tissue formed by several depots located below the skin (subcutaneous depots) or in the trunk (visceral depots). It provides the survival of the body by storing/dispensing energy for metabolism and regulating thermogenesis, immune responses, and lactation. Two major types of adipose tissue exist in mammals, the white and brown fats, which are mainly composed of white and brown adipocytes, respectively. White adipocytes primarily act as storage cells for triacylglycerols. They have endocrine functions including the secretion of adipokines such as leptin, resistin, and adiponectin. Brown adipocytes are characterized by a cytoplasm composed of several small lipid droplets and a high amount of mitochondria. They mediate non-shivering thermogenesis, which is the major physiological function of brown adipose tissue. Marrow adipose tissue (MAT) is a third type of adipose tissue, functionally distinct from both white and brown adipose tissues. The development of marrow adipose tissue depends on the stage of life and greatly increases in pathological conditions.

Recently, a growing body of evidence has finally confirmed that fully differentiated adipocytes retain the physiological ability to transdifferentiate, undergoing the reprogram of genome and turning into a different cell type with different physiological roles. This peculiar plasticity of adipose tissue ensures that certain physiologic stimuli can induce change of cell phenotype and, consequently, their function. In future, increasingly in-depth analysis of the observed phenomenon of transdifferentiation will contribute to further understanding the plasticity of adipose cells, improving knowledge of their biology and encouraging novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cinti S (2001) The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 60:319–328

    Article  CAS  PubMed  Google Scholar 

  2. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  3. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328:1113–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite”, and white adipose tissues. Am J Physiol Endocrinol Metab 302:E19–E31

    Article  PubMed  Google Scholar 

  6. Smorlesi A, Frontini A, Giordano A, Cinti S (2012) The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev 13(Suppl 2):83–96

    Article  CAS  PubMed  Google Scholar 

  7. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  CAS  PubMed  Google Scholar 

  8. Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253

    Article  CAS  PubMed  Google Scholar 

  9. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    Article  CAS  PubMed  Google Scholar 

  10. Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175:219–223

    Article  CAS  PubMed  Google Scholar 

  11. Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  CAS  PubMed  Google Scholar 

  12. Vande Berg BC, Malghem J, Lecouvet FE, Devogelaer JP, Maldague B, Houssiau FA (1999) Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis Rheum 42:1405–1411

    Article  CAS  PubMed  Google Scholar 

  13. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  CAS  PubMed  Google Scholar 

  14. Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  CAS  PubMed  Google Scholar 

  15. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230

    Article  PubMed  Google Scholar 

  16. Griffith JF, Yeung DK, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951

    Article  PubMed  Google Scholar 

  17. Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, Nisoli E, Tonello C, Pisoschi C, Luchetti MM et al (2004) Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A 101:16801–16806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Matteis R, Zingaretti MC, Murano I, Vitali A, Frontini A, Giannulis I, Barbatelli G, Marcucci F, Bordicchia M, Sarzani R et al (2009) In vivo physiological transdifferentiation of adult adipose cells. Stem Cells 27:2761–2768

    Article  PubMed  Google Scholar 

  19. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fat Acids 73:9–15

    Article  CAS  Google Scholar 

  20. Frontini A, Cinti S (2010) Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab 11:253–256

    Article  CAS  PubMed  Google Scholar 

  21. Masso-Welch PA, Darcy KM, Stangle-Castor NC, Ip MM (2000) A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia 5:165–185

    Article  CAS  PubMed  Google Scholar 

  22. Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S (2014) White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 170(5):R159–71

    Article  CAS  PubMed  Google Scholar 

  23. Cinti S (2011) Between brown and white: novel aspects of adipocyte differentiation. Ann Med 43:104–115

    Article  PubMed  Google Scholar 

  24. Giordano A, Frontini A, Cinti S (2008) Adipose organ nerves revealed by immunohistochemistry. Methods Mol Biol 456:83–95

    Article  PubMed  Google Scholar 

  25. Kuji I, Imabayashi E, Minagawa A, Matsuda H, Miyauchi T (2008) Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma. Ann Nucl Med 22:231–235

    Article  PubMed  Google Scholar 

  26. Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178

    Article  CAS  PubMed  Google Scholar 

  27. Sbarbati A, Morroni M, Zancanaro C, Cinti S (1991) Rat interscapular brown adipose tissue at different ages: a morphometric study. Int J Obes 15:581–587

    CAS  PubMed  Google Scholar 

  28. Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120

    Article  CAS  PubMed  Google Scholar 

  29. Morroni M, Barbatelli G, Zingaretti MC, Cinti S (1995) Immunohistochemical, ultrastructural and morphometric evidence for brown adipose tissue recruitment due to cold acclimation in old rats. Int J Obes Relat Metab Disord 19:126–131

    CAS  PubMed  Google Scholar 

  30. Nedergaard J, Bengtsson T, Cannon B (2010) Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212:E20–E36

    Article  PubMed  Google Scholar 

  31. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49:1562–1568

    Article  CAS  PubMed  Google Scholar 

  32. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lean ME (1989) Brown adipose tissue in humans. Proc Nutr Soc 48:243–256

    Article  CAS  PubMed  Google Scholar 

  34. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  35. Otto TC, Lane MD (2005) Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40:229–242

    Article  CAS  PubMed  Google Scholar 

  36. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K et al (2007) Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A 104:4401–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JW, Tang QQ, Vinson C, Lane MD (2004) Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 101:43–47

    Article  CAS  PubMed  Google Scholar 

  39. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim WK, Choi HR, Park SG, Ko Y, Bae KH, Lee SC (2012) Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization. Int J Biochem Cell Biol 44:327–334

    Article  CAS  PubMed  Google Scholar 

  41. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kajimura S, Seale P, Spiegelman BM (2010) Transcriptional control of brown fat development. Cell Metab 11:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Townsend K, Tseng YH (2012) Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte 1:13–24

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M (2001) Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 276:1486–1493

    Article  CAS  PubMed  Google Scholar 

  46. Cinti S (2009) Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 297:E977

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown. Genes Dev 27:234–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681

    CAS  PubMed  Google Scholar 

  49. Schoonjans K, Auwerx J (2000) Thiazolidinediones: an update. Lancet 355:1008–1010

    Article  CAS  PubMed  Google Scholar 

  50. Toseland CD, Campbell S, Francis I, Bugelski PJ, Mehdi N (2001) Comparison of adipose tissue changes following administration of rosiglitazone in the dog and rat. Diabetes Obes Metab 3:163–170

    Article  CAS  PubMed  Google Scholar 

  51. Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koh YJ, Park BH, Park JH et al (2009) Activation of PPAR gamma induces profound multilocularization of adipocytes in adult mouse white adipose tissues. Exp Mol Med 41:880–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  54. Tiraby C, Tavernier G, Lefort C et al (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376

    Article  CAS  PubMed  Google Scholar 

  55. Seale P, Conroe HM, Estall J et al (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105

    Article  CAS  PubMed  Google Scholar 

  56. Hondares E, Iglesias R, Giralt A et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286:12983–12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F (2010) Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 11:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yadav H, Quijano C, Kamaraju AK et al (2011) Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab 14:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  Google Scholar 

  61. Matsumoto T, Kano K, Kondo D et al (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222

    Article  CAS  PubMed  Google Scholar 

  62. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, Sharma R, Hudgins LC, Ntambi JM, Friedman JM (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243

    Article  CAS  PubMed  Google Scholar 

  63. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  64. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  CAS  PubMed  Google Scholar 

  65. Yamauchi T, Kadowaki T (2008) Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int J Obes 32(Suppl 7):S13–S18

    Article  CAS  Google Scholar 

  66. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor α inhibits signaling from the insulin receptor. PNAS 91:4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colaianni, G., Colucci, S., Grano, M. (2015). Anatomy and Physiology of Adipose Tissue. In: Lenzi, A., Migliaccio, S., Donini, L. (eds) Multidisciplinary Approach to Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-09045-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09045-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09044-3

  • Online ISBN: 978-3-319-09045-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics