Skip to main content

Neuroarchaeology

  • Chapter
  • First Online:
Book cover Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

Abstract

“Neuroarchaeology” in the broad sense refers to any application of neuroscience theory and methods to archaeological questions. This includes the interpretation of archaeological materials in terms of the cognitive operations and neural substrates they are thought to imply as well as the experimental study of archaeologically-visible behaviors using neuroscience methods. The particular strengths and interests of archaeology have led neuroarchaeologists to focus on three broad themes in neuroscience theory: grounded cognition, executive function, and social cognition. Much of the published work in neuroarchaeology has consisted of attempts to apply neuroscience perspectives on these topics to interpretations of the archaeological record. Experimental neuroarchaeology, a straightforward methodological extension of conventional experimental archaeology, has been less common. This may change with the increasing availability of neuroscience methods for investigating complex, real-world behaviors. The use of neuroimaging methods to study experimental stone tool-making provides one example. Archaeology and neuroscience are united in the quest to understand human nature but remain deeply divided by disciplinary history, culture, methods, career paths, and institutional support. Whereas the utility of neuroscience methods to archaeology is clear, there has been less interest among neuroscientists in the potential contributions of archaeological strengths in the study of evolution and material culture. The future of “neuroarchaeology” as just another niche focus within archaeology or as something more will ultimately depend on its relevance to the questions and research agendas of neuroscientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbib MA (2011) From mirror neurons to complex imitation in the evolution of language and tool use. Ann Rev Anthropol 40(1):257–273

    Google Scholar 

  • Aron AA, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177

    Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4(10):829–839

    Google Scholar 

  • Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10(9):659–669

    Google Scholar 

  • Barsalou LW (1999) Perceptual symbol systems. Behav Brain Sci 22(04):577–660

    Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Ann Rev Psychol 59:617–645

    Google Scholar 

  • Bartels A, Zeki S (2004) Functional brain mapping during free viewing of natural scenes. Hum Brain Mapp 21(2):75–85

    Google Scholar 

  • Battro AM, Fischer KW, and Léna PJ (2008) The educated brain: essays in neuroeducation: Cambridge University Press, Cambridge

    Google Scholar 

  • Bernstein NA (1996) On dexterity and its development. In: Latash ML (ed) Dexterity and its development. Lawrence Erlbaum Associates Publishers, Mahwah, p 3–246

    Google Scholar 

  • Berti A, Frassinetti F (2000) When far becomes near: remapping of space by tool use. J Cogn Neurosci 12(3):415–420

    Google Scholar 

  • Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25:151–188

    Google Scholar 

  • Bril B, Roux V (2005a) General introduction: a dynamic systems framework for studying a uniquely hominin innovation. In: Roux V, Bril B (eds) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge, pp 1–18

    Google Scholar 

  • Bril B, Roux V (2005b) Synthesis and speculations. In: Roux V, Bril B (eds) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge, pp 353–355

    Google Scholar 

  • Bril B, Roux V, Dietrich G (2000) Habilites impliquees dans la taille des perles en roches dure: characteristiques motrices et cognitives d’une action situe complexe. In: Roux V (ed) Les perles de Cambay: des practiques techniques aux technosystemes de L’orient Ancien. Editions de la MSH, Paris, pp 211–329

    Google Scholar 

  • Bril B, Roux V, Dietrich G (2005) Stone knapping: Khambhat (India), a unique opportunity? In: Roux V, Bril B (eds) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge, pp 53–72

    Google Scholar 

  • Bril B, Dietrich G, Foucart J, Fuwa K, Hirata S (2009) Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut? Anim Cogn 12(2):217–235

    Google Scholar 

  • Bril B, Rein R, Nonaka T, Wenban-Smith F, Dietrich G (2010) The role of expertise in tool use: skill differences in functional action adaptations to task constraints. J Exp Psychol Hum Percept Perform 36(4):825–839

    Google Scholar 

  • Bril B, Smaers J, Steele J, Rein R, Nonaka T, Dietrich G, Biryukova E, Hirata S, Roux V (2012) Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain. Philos Trans R Soc B: Biol Sci 367(1585):59–74

    Google Scholar 

  • Broca P (2006) Comments regarding the seat of the faculty of spoken language, followed by an observation of Aphemia (loss of speech). In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 291–304

    Google Scholar 

  • Bruner E (2010) Morphological differences in the Parietal Lobes within the human genus. Curr Anthropol 51(S1):S77–S88

    Google Scholar 

  • Camerer C, Loewenstein G, Prelec D (2005) Neuroeconomics: how neuroscience can inform economics. J Econ Lit 43(1):9–64

    Google Scholar 

  • Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337

    Google Scholar 

  • Churchland PS (1989) Neurophilosophy: toward a unified science of the mind-brain: MIT Press, Cambridge

    Google Scholar 

  • Clark A (2008) Supersizing the mind: embodiment, action, and cognitive extension. Oxford University Press, Oxford

    Google Scholar 

  • Clark A, Chalmers D (1998) The extended mind. Analysis 58(1):7–19

    Google Scholar 

  • Coles JM (1979) Experimental archaeology. Academic Press, London

    Google Scholar 

  • Coolidge FL, Wynn T (2001) Executive functions of the frontal lobes and the evolutionary ascendancy of Homo sapiens. Camb Archaeol J 11(2):255–260

    Google Scholar 

  • Coolidge FL, Wynn T (2005) Working memory, its executive functions, and the emergence of modern thinking. Camb Archaeol J 15(1):5–26

    Google Scholar 

  • Coolidge FL, Wynn T (2009) The rise of Homo sapiens: the evolution of modern thinking. Wiley-Blackwell, Chichester

    Google Scholar 

  • Corballis MC (2003) From mouth to hand: gesture, speech, and the evolution of right handedness. Behav Brain Sci 26:199–260

    Google Scholar 

  • David N, Kramer C (2001) Ethnoarchaeology in action. Cambridge University Press, New York

    Google Scholar 

  • Decety J, Grèzes J (2006) The power of simulation: imagining one’s own and other’s behavior. Brain Res 1079(1):4–14

    Google Scholar 

  • d’Errico F, Stringer CB (2011) Evolution, revolution or saltation scenario for the emergence of modern cultures? Philos Trans R Soc B: Biol Sci 366(1567):1060

    Google Scholar 

  • Dias AM (2010) The foundations of neuroanthropology. Front Evol Neurosci 2:5 doi: 10.3389/neuro.18.005.2010

  • Domínguez Duque JF, Turner R, Lewis ED, Egan G (2010) Neuroanthropology: a humanistic science for the study of the culture–brain nexus. Soc Cogn Affect Neurosci 5(2–3):138–147

    Google Scholar 

  • Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105

    Google Scholar 

  • Engle RW, Tuholski SW, Laughlin JE, Conway ARA (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen 128(3):309–331

    Google Scholar 

  • Ericsson KA, Krampe RT, Tesch-Romer C (1993) The role of deliberate practice in the acquisition of expert performance. Psychol Rev 100(3):363–406

    Google Scholar 

  • Fadiga L, Craighero L, D’Ausilio A (2009) Broca’s area in language, action, and music. Ann N Y Acad Sci 1169(1):448–458

    Google Scholar 

  • Fagg AH, Arbib MA (1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Networks 11(7–8):1277–1303

    Google Scholar 

  • Faisal A, Stout D, Apel J, Bradley B (2010) The manipulative complexity of lower paleolithic stone toolmaking. PLoS ONE 5(11):e13718

    Google Scholar 

  • Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2):921–935

    Google Scholar 

  • Fink GR, Manjaly ZM, Stephan KE, Gurd JM, Zilles K, Amunts K, Marshall JC (2006) A role for Broca’s area beyond language processing: evidence from neuropsychology and fMRI. In: Godzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 254–268

    Google Scholar 

  • Fragaszy DM (2011) Community resources for learning: how capuchin monkeys construct technical traditions. Biol Theory 6(3):231–240

    Google Scholar 

  • Frey SH (2007) What puts the how in where? tool use and the divided visual streams hypothesis. Cortex 43(3):368–375

    Google Scholar 

  • Frey SH, Gerry V (2006) Modulation of neural activity during observational learning of action and their sequential orders. J Neurosci 26(51):13194–13201

    Google Scholar 

  • Frith CD, Frith U (2006) The neural basis of mentalizing. Neuron 50(4):531–534

    Google Scholar 

  • Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8(9):396–403

    Google Scholar 

  • Gallese V, Rochat M, Cossu G, Sinigaglia C (2009) Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol 45(1):103–113

    Google Scholar 

  • Gell A (1998) Art and agency: an anthropological theory. Clarendon Press, Oxford

    Google Scholar 

  • Gibson JJ (1986) The ecological approach to visual perception. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Gopnik A, Wellman HM (1992) Why the child’s theory of mind really is a theory. Mind Lang 7(1–2):145–171

    Google Scholar 

  • Gowlett JAJ (1986) Culture and conceptualisation: the Oldowan-Acheulian gradient. In: Bailey GN, Callow P (eds) Stone age prehistory: studies in memory of Charles Mcburney. Cambridge University Press, Cambridge, pp 243–260

    Google Scholar 

  • Grafton ST (2009) Embodied cognition and the simulation of action to understand others. Ann N Y Acad Sci 1156:97–117 (The Year in Cognitive Neuroscience 2009)

    Google Scholar 

  • Grèzes J, Decety J (2002) Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40(2):212–222

    Google Scholar 

  • Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9(9):416–423

    Google Scholar 

  • Hartmann K, Goldenberg G, Daumuller M, Hermsdorfer J (2005) It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia 43:625–637

    Google Scholar 

  • Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303(5664):1634–1640

    Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34(2–3):102–254

    Google Scholar 

  • Hecht EE, Gutman DA, Preuss TM, Sanchez MM, Parr LA, Rilling JK (2012) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cereb Cortex 23(5):1014–1024

    Google Scholar 

  • Hecht EE, Murphy LE, Gutman DA, Votaw JR, Schuster DM, Preuss TM, Orban GA, Stout D, Parr LA (2013) Differences in neural activation for object-directed grasping in chimpanzees and humans. J Neurosci 33(35):14117–14134

    Google Scholar 

  • Henshilwood CS, Dubreuil B (2011) The still bay and howiesons poort, 77–59 ka: symbolic material culture and the evolution of the mind during the African middle Stone Age. Curr Anthropol 52(3):361–400

    Google Scholar 

  • Hewes GW (1973) Primate communication and the gestural origins of language. Curr Anthropol 14:5–24

    Google Scholar 

  • Hihara S, Notoya T, Tanaka M, Ichinose S, Ojima H, Obayashi S, Fujii N, Iriki A (2006) Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia 44:2636–2646

    Google Scholar 

  • Hodder I (2012) Entangled: an archaeology of the relationships between humans and things. Wiley-Blackwell, Malden

    Google Scholar 

  • Holloway R (1969) Culture: a human domain. Curr Anthropol 10:395–412

    Google Scholar 

  • Hopkins WD, Taglialatela JP, Russell JL, Nir TM, Schaeffer J (2010) Cortical representation of lateralized grasping in chimpanzees (Pan troglodytes): a combined MRI and PET study. PLoS ONE 5(10):e13383

    Google Scholar 

  • Hutchins E (1995) Cognition in the wild. MIT Press, Cambridge

    Google Scholar 

  • Ingold T (2001) Beyond art and technology: the anthropology of skill. In Michael S (ed) Anthropological Perspectives on Technology, University of New Mexico Press, Albuquerque, pp. 17–31

    Google Scholar 

  • Iriki A, Sakura O (2008) The neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction. Philos Trans R Soc B: Biol Sci 363(1500):2229–2241

    Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 7(14):2325

    Google Scholar 

  • Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15(6):681–695

    Google Scholar 

  • Jones EG, Mendell LM (1999) Assessing the decade of the Brain. Science 284(5415):739

    Google Scholar 

  • Karmiloff-Smith A (1992) Beyond modularity: a developmental perspective on cognitive science. MIT Press, Cambridge

    Google Scholar 

  • Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15(8):1089–1102

    Google Scholar 

  • Kilner JM, Neal A, Weiskopf N, Friston KJ, Frith CD (2009) Evidence of mirror neurons in human inferior frontal gyrus. J Neurosci 29(32):10153–10159

    Google Scholar 

  • Kirsch W, Herbort O, Butz MV, Kunde W (2012) Influence of motor planning on distance perception within the peripersonal space. PLoS ONE 7(4):e34880

    Google Scholar 

  • Koechlin E, Jubault T (2006) Broca’s area and the hierarchical organization of human behavior. Neuron 50(6):963–974

    Google Scholar 

  • Lakoff G, Johnson M (1980) Metaphors we live by. University of Chicago Press, Chicago

    Google Scholar 

  • Lave J, Wenger E (1991) Situated learning: legitimate peripheral participation. Cambridge University Press, Cambridge

    Google Scholar 

  • Malafouris L (2004) The cognitive basis of material engagement: where brain, body and culture conflate. In: DeMarrais E, Gosden C, Renfrew C (eds) Rethinking materiality: the engagement of mind with the material world. McDonald Institute for Archaeological Research, Cambridge, pp 53–61

    Google Scholar 

  • Malafouris L (2008) Between brains, bodies and things: tectonite awareness and the extended self. Philos Trans R Soc B: Biol Sci 363(1499):1993–2002

    Google Scholar 

  • Malafouris L (2009) “Neuroarchaeology”: exploring the links between neural and cultural plasticity. In: Joan YC (ed) Progress in Brain research: Elsevier, Amsterdam, pp 253–261

    Google Scholar 

  • Malafouris L (2010) The brain–artefact interface (BAI): a challenge for archaeology and cultural neuroscience. Soc Cogn Affect Neurosci 5(2–3):264–273

    Google Scholar 

  • Malafouris L, Renfrew C (2008) Introduction. Camb Archaeol J 18(03):381–385

    Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8(2):79–86

    Google Scholar 

  • McClelland JL, Botvinick MM, Noelle DC, Plaut DC, Rogers TT, Seidenberg MS, Smith LB (2010) Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends Cogn Sci 14(8):348–356

    Google Scholar 

  • Menenti L, Petersson KM, Scheeringa R, Hagoort P (2009) When elephants fly: differential sensitivity of right and left inferior frontal gyri to discourse and world knowledge. J Cogn Neurosci 21(12):2358–2368

    Google Scholar 

  • Merleau-Ponty M (1962) Phenomenology of perception. Humanities Press, New York

    Google Scholar 

  • Miller GA (2003) The cognitive revolution: a historical perspective. Trends Cogn Sci 7(3):141–144

    Google Scholar 

  • Mithen S (1996) The Prehistory of the mind: the cognitive origins of art, religion and science. Thames and Hudson Ltd, London

    Google Scholar 

  • Nonaka T, Bril B, Rein R (2010) How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. J Hum Evol 59(2):155–167

    Google Scholar 

  • Oakley KP (1954) Skill as a human possession. In: Singer C, Holmyard EJ, Hall AR (eds) A history of technology volume I, from early times to fall of ancient empires. Clarendon press, Oxford, pp 1–37

    Google Scholar 

  • Obayashi S, Suhara T, Kawabe K, Okauchi T, Maeda J, Akine Y, Onoe H, Iriki A (2001) Functional brain mapping of monkey tool use. Neuroimage 14(4):853–861

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Onians J (2007) Neuroarthistory: from Aristotle and Pliny to Baxandall and Zeki. New Haven [Conn.]; Yale University Press, London

    Google Scholar 

  • Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand J-B, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667

    Google Scholar 

  • Parasuraman R, Rizzo M (2006) Neuroergonomics: the brain at work. Oxford University Press, Oxford

    Google Scholar 

  • Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee Brain. Curr Biol 19(1):50–53

    Google Scholar 

  • Peeters R, Simone L, Nelissen K, Fabbri-Destro M, Vanduffel W, Rizzolatti G, Orban GA (2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci 29(37):11523–11539

    Google Scholar 

  • Peeters RR, Rizzolatti G, Orban GA (2013) Functional properties of the left parietal tool use region. NeuroImage 78:83–93

    Google Scholar 

  • Powell A, Shennan S, Thomas MG (2009) Late Pleistocene demography and the appearance of modern human behavior. Science 324(5932):1298–1301

    Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci 96(20):11601–11606

    Google Scholar 

  • Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci 11(5):351–360

    Google Scholar 

  • Ramachandran VS (2000) Mirror neurons and imitation learning as the driving force behind “the great leap forward” in human evolution. Edge Foundation web site

    Google Scholar 

  • Reed ES (1996) Encountering the world: toward an ecological psychology. Oxford University Press, New York

    Google Scholar 

  • Rein R, Bril B, Nonaka T (2013) Coordination strategies used in stone knapping. Am J Phys Anthropol 150(4):539–550

    Google Scholar 

  • Renfrew C (1994) Towards a cognitive archaeology. In: Renfrew C, Zubrow EBW (eds) The ancient mind: elements of cognitive archaeology. Cambridge University Press, Cambridge, pp 3–12

    Google Scholar 

  • Renfrew C (2004) Towards a theory of material engagement. In: DeMarrais E, Gosden C, Renfrew C (eds) Rethinking materiality: the engagement of mind with the material world. McDonald Institute for Archaeological Research, Cambridge, pp 23–31

    Google Scholar 

  • Renfrew C (2008) Neuroscience, evolution and the sapient paradox: the factuality of value and of the sacred. Philos Trans R Soc B: Biol Sci 363(1499):2041–2047

    Google Scholar 

  • Rilling JK (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol 137(S47):2–32

    Google Scholar 

  • Rilling JK, Stout D (In press) Evolution of the neural bases of higher cognitive function in humans. In The cognitive neurosciences, 5th edn

    Google Scholar 

  • Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremner JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci 104(43):17146–17151

    Google Scholar 

  • Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Cogn Sci 21(5):188–194

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192

    Google Scholar 

  • Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1996) Premotor cortex and the recognition of actions. Cogn Brain Res 3:131–141

    Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106(4):283–296

    Google Scholar 

  • Roepstorff A, Frith C (2012) Neuroanthropology or simply anthropology? Going experimental as method, as object of study, and as research aesthetic. Anthropol Theory 12(1):101–111

    Google Scholar 

  • Rogoff B (1990) Apprenticeship in thinking: cognitive development in social context. Oxford University Press, Oxford

    Google Scholar 

  • Ross ED, Monnot M (2008) Neurology of affective prosody and its functional-anatomic organization in right hemisphere. Brain Lang 104(1):51–74

    Google Scholar 

  • Rossano MJ (2003) Expertise and the evolution of consciousness. Cognition 89(3):207–236

    Google Scholar 

  • Roux V (1990) The psychological analysis of technical activities: a contribution to the study of craft specialization. Archaeol Rev Camb 9(1):142–153

    Google Scholar 

  • Roux V, Bril B (eds) (2005) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge

    Google Scholar 

  • Roux V, Bril B, Dietrich G (1995) Skills and learning difficulties involved in stone knapping. World Archaeol 27(1):63–87

    Google Scholar 

  • Saraydar SC (2008) Replicating the past: the art and science of the archaeological experiment. Waveland Press, Long Grove, Ill

    Google Scholar 

  • Saxe R (2005) Against simulation: the argument from error. Trends Cogn Sci 9(4):174–179

    Google Scholar 

  • Schiffer MB (1999) The material life of human beings: artifacts, behavior and communication. Routledge, New York

    Google Scholar 

  • Schlegel AA, Rudelson JJ (2012) White matter structure changes as adults learn a second language. J Cogn Neurosci 24(8):1664–1670

    Google Scholar 

  • Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371

    Google Scholar 

  • Schubotz RI, Cramon von DY (2003) Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. NeuroImage  20: S120–S131

    Google Scholar 

  • Semaw S (2000) The world’s oldest stone artefacts from Gona, Ethiopia: their implications for understanding stone technology and patterns of human evolution 2.6–1.5 million years ago. J Archaeol Sci 27:1197–1214

    Google Scholar 

  • Stout D (2002) Skill and cognition in stone tool production: an ethnographic case study from Irian Jaya. Curr Anthropol 45(3):693–722

    Google Scholar 

  • Stout D (2005) The social and cultural context of stone-knapping skill acquisition. In: Roux V, Bril B (eds) Stone knapping: the necessary conditions for a uniquely hominin behaviour. McDonald Institute for Archaeological Research, Cambridge, pp 331–340

    Google Scholar 

  • Stout D (2010) The evolution of cognitive control. Topics Cogn Sci 2(4):614–630

    Google Scholar 

  • Stout D (2011) Stone toolmaking and the evolution of human culture and cognition. Philos Trans R Soc B: Biol Sci 366(1567):1050–1059

    Google Scholar 

  • Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100

    Google Scholar 

  • Stout D, Chaminade T (2012) Stone tools, language and the brain in human evolution. Philos Trans R Soc B: Biol Sci 367(1585):75–87

    Google Scholar 

  • Stout D, Toth N, Schick KD, Chaminade T (2008) Neural correlates of Early Stone Age tool-making: technology, language and cognition in human evolution. Philos Trans R Soc Lond B 363:1939–1949

    Google Scholar 

  • Stout D, Passingham R, Frith C, Apel J, Chaminade T (2011) Technology, expertise and social cognition in human evolution. Eur J Neurosci 33(7):1328–1338

    Google Scholar 

  • Stuss DT, Alexander MP (2007) Is there a dysexecutive syndrome? Philos Trans R Soc B: Biol Sci 362(1481):901–915

    Google Scholar 

  • Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2008) Communicative signaling activates ‘Broca’s’ homolog in chimpanzees. Curr Biol 18(5):343–348

    Google Scholar 

  • Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2009) Visualizing vocal perception in the chimpanzee brain. Cereb Cortex 19(5):1151–1157

    Google Scholar 

  • Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2011) Chimpanzee vocal signaling points to a multimodal origin of human language. PLoS ONE 6(4):e18852

    Google Scholar 

  • Teffer K, Semendeferi K (2012) Human prefrontal cortex: evolution, development, and pathology. In: Michel AH, Dean F (eds) Progress in Brain research. Elsevier, Amsterdam, pp 191–218

    Google Scholar 

  • Tennie C, Call J, Tomasello M (2009) Ratcheting up the ratchet: on the evolution of cumulative culture. Philos Trans R Soc B: Biol Sci 364(1528):2405–2415

    Google Scholar 

  • Thelen E, Smith L (1994) A dynamic systems approach to the development of cognition and action. MIT Press/Bradford Books, Cambridge

    Google Scholar 

  • Tomasello M (1999) The cultural origins of human cognition. Harvard University Press, Cambridge

    Google Scholar 

  • Tomasello M, Carpenter M, Call J, Behne T, Moll H (2005) Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 28(05):675–691

    Google Scholar 

  • van Gelder T (1998) The dynamical hypothesis in cognitive science. Behav Brain Sci 21:615–665

    Google Scholar 

  • Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415

    Google Scholar 

  • Vygotsky LS (1978) Mind in society: the development of higher psychological process. Harvard University Press, Cambridge

    Google Scholar 

  • Wadley L (2010) Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Curr Anthropol 51(S1):S111–S119

    MathSciNet  Google Scholar 

  • Wilson M (2002) Six views of embodied cognition. Psychon Bull Rev 9(4):625–636

    Google Scholar 

  • Wolpert D, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B 358:593–602

    Google Scholar 

  • Wynn T (1979) The intelligence of later acheulean hominids. Man 14(3):371–391

    MathSciNet  Google Scholar 

  • Wynn T (2002) Archaeology and cognitive evolution. Behav Brain Sci 25:389–438

    Google Scholar 

  • Wynn T, Coolidge FL (2004) The expert Neandertal mind. J Hum Evol 46(4):467–487

    Google Scholar 

  • Wynn T, Coolidge Frederick L (2010) Beyond symbolism and language: an introduction to supplement 1 working memory. Curr Anthropol 51(S1):S5–S16

    Google Scholar 

  • Wynn T, Coolidge F, Bright M (2009) Hohlenstein-stadel and the evolution of human conceptual thought. Camb Archaeol J 19(01):73–84

    Google Scholar 

  • Zukow-Goldring P, Arbib MA (2007) Affordances, effectivities, and assisted imitation: caregivers and the directing of attention. Neurocomputing 70(13–15):2181–2193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Stout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stout, D., Hecht, E. (2015). Neuroarchaeology. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics