Skip to main content

Agwan: A Generative Model for Labelled, Weighted Graphs

  • Conference paper
  • First Online:
Book cover New Frontiers in Mining Complex Patterns (NFMCP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8399))

Included in the following conference series:

Abstract

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present Agwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwan model to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akoglu, L., McGlohon, M., Faloutsos, C.: OddBall: spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 410–421. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics, 3rd edn. Springer, New York (2011)

    Google Scholar 

  4. Blei, D.M., Jordan, M.I.: Variational inference for Dirichlet process mixtures. Bayesian Anal. 1, 121–144 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bouguila, N., Ziou, D., Monga, E.: Practical Bayesian estimation of a finite Beta mixture through Gibbs sampling and its applications. Stat. Comput. 16(2), 215–225 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chakrabarti, D., Faloutsos, C.: Graph Mining: Laws, Tools, and Case Studies. Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers, San Rafael (2012)

    Google Scholar 

  7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) SDM. SIAM (2004)

    Google Scholar 

  8. Davis, M., Liu, W., Miller, P.: Finding the most descriptive substructures in graphs with discrete and numeric labels. J. Intell. Inf. Syst. 42(2), 307–332 (2014). http://dx.doi.org/10.1007/s10844-013-0299-7, DBLP. http://dblp.uni-trier.de

    Article  Google Scholar 

  9. Eichinger, F., Huber, M., Böhm, K.: On the usefulness of weight-based constraints in frequent subgraph mining. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) SGAI Conference, pp. 65–78. Springer, London (2010)

    Google Scholar 

  10. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    Google Scholar 

  11. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76(2), 026107 (2007)

    Article  MathSciNet  Google Scholar 

  12. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  13. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hunter, R.F., Davis, M., Tully, M.A., Kee, F.: The physical activity loyalty card scheme: development and application of a novel system for incentivizing behaviour change. In: Kostkova, P., Szomszor, M., Fowler, D. (eds.) eHealth 2011. LNICST, vol. 91, pp. 170–177. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  16. Kim, M., Leskovec, J.: Modeling social networks with node attributes using the Multiplicative Attribute Graph model. In: Cozman, F.G., Pfeffer, A. (eds.) UAI, pp. 400–409. AUAI Press, Corvallis (2011)

    Google Scholar 

  17. Kim, M., Leskovec, J.: Multiplicative Attribute Graph model of real-world networks. Internet Math. 8(1–2), 113–160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kurihara, K., Welling, M., Vlassis, N.A.: Accelerated variational Dirichlet process mixtures. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS, pp. 761–768. MIT Press, Cambridge (2006)

    Google Scholar 

  19. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Lindblom, J., Samuelsson, J.: Bounded support Gaussian mixture modeling of speech spectra. IEEE Trans. Speech Audio Process. 11(1), 88–99 (2003)

    Article  Google Scholar 

  21. Newman, M.: Networks: An Introduction. OUP, New York (2010)

    Book  Google Scholar 

  22. Wang, Y., Wong, G.: Stochastic block models for directed graphs. J. Am. Stat. Assoc. 82(397), 8–19 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Davis .

Editor information

Editors and Affiliations

Appendix: KS and L2 Statistics

Appendix: KS and L2 Statistics

Table 1. KS statistic for undirected graph, real attributes (Figs. 4, 5, 6, 7)
Table 2. L2 statistic for undirected graph, real attributes (Figs. 4, 5, 6, 7)
Table 3. KS statistic for directed graph, real attributes (Figs. 4, 5, 6, 7)
Table 4. L2 statistic for directed graph, real attributes (Figs. 4, 5, 6, 7)
Table 5. KS statistic for undirected graph, synthetic attributes (Figs. 8, 9, 10, 11)
Table 6. L2 statistic for undirected graph, synthetic attributes (Figs. 8, 9, 10, 11)
Table 7. KS statistic for directed graph, synthetic attributes (Figs. 8, 9, 10, 11)
Table 8. L2 statistic for directed graph, synthetic attributes (Figs. 8, 9, 10, 11)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Davis, M., Liu, W., Miller, P., Hunter, R.F., Kee, F. (2014). Agwan: A Generative Model for Labelled, Weighted Graphs. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2013. Lecture Notes in Computer Science(), vol 8399. Springer, Cham. https://doi.org/10.1007/978-3-319-08407-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08407-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08406-0

  • Online ISBN: 978-3-319-08407-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics