Skip to main content

A Hybrid Genetic Algorithm and Radial Basis Function NEAT

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 440))

Abstract

We propose a new neuroevolution technique that makes use of genetic algorithm to improve the task provided to a Radial Basis Function – NEAT algorithm. Normally, Radial Basis Function works best when the input- output mapping is smooth, that is, the dimensionality is high. However, if the input changes abruptly, for example, for fractured problems, efficient mapping cannot happen. Thus, the algorithm cannot solve such problems effectively. We make use of genetic algorithm to emulate the smoothing parameter in the Radial Basis function. In the proposed algorithm, the input- output mapping is done in a more efficient manner due to the ability of genetic algorithm to approximate almost any function. The technique has been successfully applied in the non- Markovian double pole balancing without velocity and the car racing strategy. It is shown that the proposed technique significantly outperforms classical neuroevolution techniques in both of the above benchmark problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karpov, I., Sheblak, J., Miikkulainen, R.: OpenNERo; A game platform for AI research and education. In: Proceeding of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference (2008)

    Google Scholar 

  2. Shettleworth, S.J.: Evolution and Learning-The Baldwin effect reconsidered. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Kull, K.: Adaptive Evolution Without Natural Selection-Baldwin effect. Cybernetics and Human Knowing 7(1), 45–55 (2000)

    Google Scholar 

  4. Baeck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New-York (1996)

    MATH  Google Scholar 

  5. Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)

    Book  Google Scholar 

  6. Yao, X., Liu, Y.: A new Evolutionary System for Evolving Artificial Neural Networks 8(3), 694–713 (1997)

    Google Scholar 

  7. Floreano, D., Urzelai, J.: Evolutionary Robots with Self-Organization and Behavioral Fitness. Neural Networks 13, 431–443 (2000)

    Article  Google Scholar 

  8. Niv, Y., Noel, D., Ruppin, E.: Evolution of reinforcement learning in Uncertain Environments; A Simple Explanation for Complex Foraging Behaviors. Adaptive Behavior 10(1), 5–24 (2002)

    Article  Google Scholar 

  9. Soltoggio, A., Bulliaria, J.A., Mattiussi, C., Durr, P., Floreano, D.: Evolutionary Advantages of Neuromodulated Plasticity in Dynamics, Reward based Scenario. In: Artificial Life XI, pp. 569–576. MIT Press, Cambridge (2008)

    Google Scholar 

  10. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation 10(2) (2002)

    Google Scholar 

  11. Potter, M.A., De Jong, K.A.: Evolving Neural Networks with Collaborative Species. In: Proceedings of the 1995 Summer Computing Simulation Conference (1995)

    Google Scholar 

  12. Radcliff, N.J.: Genetic Set Recombination and its application to Neural Network Topology Optimization. Neural Computing and Applications 1(1), 67–90 (1992)

    Article  Google Scholar 

  13. Wieland, A.: Evolving Neural Networks Controllers for unstable systems. In: Proceedings of the International Joint Conference on Neural Networks, Seattle, WA. IEEE (1991)

    Google Scholar 

  14. Saravanan, N., Fogel, D.B.: Evolving Neural Control Systems. IEEE Expert, 23–27 (1995)

    Google Scholar 

  15. Reisinger, J., Bahceci, E., Karpov, I., Miikkulainen, R.: Coevolving Strategies for general game playing. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games (2007)

    Google Scholar 

  16. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-Time Neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation 9(6), 653–668 (2007)

    Article  Google Scholar 

  17. Stanley, K.O., Miikkulainen, R.: Competitive Coevolution through Evolutionary Complexification. Journal of Artificial Intelligence Research, 63–100 (2004)

    Google Scholar 

  18. Stanley, K.O., Miikkulainen, R.: Evolving a roving eye for go. In: Proceeding of the Genetic and Evolutionary Computation Conference (2004)

    Google Scholar 

  19. Lucas, S.M., Togelius, J.: Point-to-pointcar racing; an Initial Study of Evolution Versus Temporal Difference Learning. In: IEEE Symposium of Computational Intelligence and Games, pp. 260–267 (2007)

    Google Scholar 

  20. Li, J., Martinez-Maron, T., Lilienthal, A., Duckett, T.: Q-ran; A Constructive Reinforcement Learning approach for Robot behavior Learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent on Intelligent Robot and System (2006)

    Google Scholar 

  21. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway Soccer: From Machine Learning Testbed to Benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Moody, J., Darken, C.J.: Fast Learning in Networks of Locally tuned Processing units. Neural Computation, 281–294 (1989)

    Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning; An Introduction. MIT Press (1998)

    Google Scholar 

  24. Wieland, A.: Evolving Neural Network Controllers for Unstable Systems. In: Proceedings of the IJCNN, Seattle, WA, pp. 667–673. IEEE (1991)

    Google Scholar 

  25. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between Cellular Encoding and Direct Encoding for Genetic Programming. In: Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 81–89 (1996)

    Google Scholar 

  26. Gomez, F.J., Miikkulainen, R.: Solving Non-Markovian Control tasks with Neuroevolution. In: Proceedings of the IJCAI, pp. 1356–1361 (1999)

    Google Scholar 

  27. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with Analog Genetic Encoding. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Jakobsen, M.: Learning to Race in a Simulated Environment, http://www.hiof.no.neted/upload/attachment/site/group12/Morgan_Jakobsen_Learning_to_race_in_a_simulated_environment.pdf (last accessed March 18, 2012)

  29. Kietzmann, T.C., Reidmiller, M.: The Neuro Slot car Racer; Reinforcement Learning in a Real World Setting, http://ml.informatik.unifreiburg.de/_media/publications/kr09.pdf (last accessed March 12, 2013)

  30. Kohl, N., Miikkulainen, R.: Evolving Neural Networks for Fractured Domains. Neural Networks 22(3), 326–337 (2009)

    Article  Google Scholar 

  31. Togelius, J., Lucas, S.M.: IEEE CEC Car Racing Competition, http://Julian.togelius.com/cec2007competition/ (last accessed February10, 2012)

  32. NEAT Matlab, http://www.cs.utexas.edu/users/ai-lab/?neatmatlab (last accessed March 02, 2012)

  33. The Radial Basis Function Network, http://www.csc.kth.se/utildning/kth/kurser/DD2432/ann12/forelasningsanteckningar/RBF.pdf (last accessed: June 21, 2012)

  34. Bajpai, P., Kumar, M.: Genetic Algorithm-an Approach to Solve Global Optimization Problems. Indian Journal of Computer Science and Engineering 1(3), 199–206 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohabeer, H., Soyjaudah, K.M.S. (2014). A Hybrid Genetic Algorithm and Radial Basis Function NEAT. In: Golovko, V., Imada, A. (eds) Neural Networks and Artificial Intelligence. ICNNAI 2014. Communications in Computer and Information Science, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-08201-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08201-1_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08200-4

  • Online ISBN: 978-3-319-08201-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics