Skip to main content

Application of Micro- or Small-Scale Biomass-Derived Fuel System for Power Generation

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Biomass being world’s largest renewable fuel source is now considered as the best alternate for fossil fuels owing to the CO2 saving nature as well as more economical as compared to fossil fuels. Although, some pretreatment process is required in order to utilize the raw biomass for power generation. There are various systems to generate power but combined heat and power (CHP) generation has proved to be the most beneficial method to generate electricity as well as heat by recovering the surplus heat to make an overall efficiency of up to 90 %. Various types of CHP systems have been discussed and compared for their working and efficiency along with their applications in different dwellings depending upon their power capacities. Moreover, biomass CHP systems have been thoroughly overviewed for their economic, energy, and environmental aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abnisa F, Arami-Niya A, Wan Daud WMA, Sahu JN, Noor IM (2013) Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag 76:1073–1082. doi:10.1016/j.enconman.2013.08.038

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685. doi:10.1016/j.biotechadv.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi P, Dincer I, Rosen MA (2013) Development and assessment of an integrated biomass-based multi-generation energy system. Energy 56:155–166

    Article  CAS  Google Scholar 

  • Ahrenfeldt J, Thomsen TP, Henriksen U, Clausen LR (2013) Biomass gasification cogeneration—a review of state of the art technology and near future perspectives. Appl Therm Eng 50(2): 1407–1417

    Article  CAS  Google Scholar 

  • Algieri A, Morrone P (2013) Energetic analysis of biomass-fired ORC systems for micro-scale combined heat and power (CHP) generation. A possible application to the Italian residential sector. Appl Therm Eng 1–9. doi:10.1016/j.applthermaleng.2013.11.024

  • Aljuboori AHR (2013) Oil palm biomass residue in Malaysia: availabilty and sustainability. Int J Biomass Renew 1(2):13–18

    Google Scholar 

  • Arsalis A, Nielsen MP, Kær SK (2011) Modeling and parametric study of a 1 kW HT-PEMFC-based residential micro-CHP system. Int J Hydrogen Energy 36(8):5010–5020

    Article  CAS  Google Scholar 

  • Arsalis A, Nielsen MP, Kær SK (2013) Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households. Appl Therm Eng 50(1): 704–713

    Article  CAS  Google Scholar 

  • Bang-Møller C, Rokni M, Elmegaard B (2011) Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy 36(8): 4740–4752

    Article  Google Scholar 

  • Barelli L, Bidini G, Gallorini F, Ottaviano A (2012) Dynamic analysis of PEMFC-based CHP systems for domestic application. Appl Energy 91(1):13–28. doi:10.1016/j.apenergy.2011.09.008

    Article  Google Scholar 

  • Bellomare F, Rokni M (2013) Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine. Renew Energy 55:490–500

    Article  CAS  Google Scholar 

  • Bernotat K, Sandberg T (2004) Biomass fired small-scale CHP in Sweden and the Baltic States: a case study on the potential of clustered dwellings. Biomass Bioenergy 27(6):521–530

    Article  Google Scholar 

  • Bianchi M, De Pascale A, Spina PR (2012) Guidelines for residential micro-CHP systems design. Appl Energy 97:673–685. doi:10.1016/j.apenergy.2011.11.023

    Article  Google Scholar 

  • Bianchi M, De Pascale A, Melino F (2013) Performance analysis of an integrated CHP system with thermal and electric energy storage for residential application. Appl Energy 112:928–938

    Article  Google Scholar 

  • Bouchard S, Landry M, Gagnon Y (2013) Methodology for the large scale assessment of the technical power potential of forest biomass: application to the province of New Brunswick, Canada. Biomass Bioenergy 54:1–17

    Article  Google Scholar 

  • Caresana F, Brandoni C, Feliciotti P, Bartolini CM (2011) Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator. Appl Energy 88(3):659–671

    Article  Google Scholar 

  • Chiew YL, Shimada S (2013) Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer—a case study of Malaysia. Biomass Bioenergy 51:109–124

    Article  CAS  Google Scholar 

  • Compernolle T, Witters N, Van Passel S, Thewys T (2011) Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions. Energy 36(4):1940–1947

    Article  Google Scholar 

  • Coutts TJ (2001) An overview of thermophotovoltaic generation of electricity. Sol Energy Mater Sol Cells 66(1):443–452

    Article  CAS  Google Scholar 

  • De Paepe M, D’Herdt P, Mertens D (2006) Micro-CHP systems for residential applications. Energy Convers Manag 47(18–19):3435–3446

    Article  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88(1):17–28

    Article  CAS  Google Scholar 

  • Dentice d’Accadia M, Sasso M, Sibilio S, Vanoli L (2003) Micro-combined heat and power in residential and light commercial applications. Appl Therm Eng 23(10):1247–1259

    Article  Google Scholar 

  • Diep NQ, Sakanishi K, Nakagoshi N, Fujimoto S, Minowa T, Tran XD (2012) Biorefinery: concepts, current status, and development trends. Int J Biomass Renew 2(1):1–8

    Google Scholar 

  • Dong L, Liu H, Riffat S (2009) Development of small-scale and micro-scale biomass-fuelled CHP systems—a literature review. Appl Therm Eng 29(11–12):2119–2126

    Article  CAS  Google Scholar 

  • Francois J, Abdelouahed L, Mauviel G, Patisson F, Mirgaux O, Rogaume C, Rogaume Y, Feidt M, Dufour A (2013) Detailed process modeling of a wood gasification combined heat and power plant. Biomass Bioenergy 51:68–82

    Article  CAS  Google Scholar 

  • Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841

    Article  CAS  PubMed  Google Scholar 

  • Hawkes AD, Leach MA (2007) Cost-effective operating strategy for residential micro-combined heat and power. Energy 32(5):711–723. doi:10.1016/j.energy.2006.06.001

    Article  Google Scholar 

  • Huang Y, McIlveen-Wright DR, Rezvani S, Huang MJ, Wang YD, Roskilly AP, Hewitt NJ (2013a) Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings. Appl Energy 112:518–525

    Article  CAS  Google Scholar 

  • Huang Y, Wang YD, Rezvani S, McIlveen-Wright DR, Anderson M, Mondol J, Zacharopolous A, Hewitt NJ (2013b) A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Appl Therm Eng 53(2):325–331

    Article  CAS  Google Scholar 

  • Idris SS, Rahman NA, Ismail K (2012) Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol 123:581–591

    Article  CAS  PubMed  Google Scholar 

  • Iora P, Silva P (2013) Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle. Appl Energy 105:108–115

    Article  Google Scholar 

  • Kartha S, Larson ED (2000) Bioenergy primer: modernised biomass energy for sustainable development. Paper presented at the UNDP

    Google Scholar 

  • Kopanos GM, Georgiadis MC, Pistikopoulos EN (2013) Energy production planning of a network of micro combined heat and power generators. Appl Energy 102:1522–1534

    Article  Google Scholar 

  • Korsgaard AR, Nielsen MP, Kær SK (2008a) Part one: a novel model of HTPEM-based micro-combined heat and power fuel cell system. Int J Hydrogen Energy 33(7):1909–1920

    Article  CAS  Google Scholar 

  • Korsgaard AR, Nielsen MP, Kær SK (2008b) Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system. Int J Hydrogen Energy 33(7):1921–1931

    Article  CAS  Google Scholar 

  • Li H, Fu L, Geng K, Jiang Y (2006) Energy utilization evaluation of CCHP systems. Energy Build 38(3):253–257. doi:10.1016/j.enbuild.2005.06.007

    Article  Google Scholar 

  • Li CZ, Shi YM, Huang XH (2008) Sensitivity analysis of energy demands on performance of CCHP system. Energy Convers Manag 49(12):3491–3497. doi:10.1016/j.enconman.2008.08.006

    Article  Google Scholar 

  • Liu B-T, Chien K-H, Wang C-C (2004) Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29(8):1207–1217. doi:10.1016/j.energy.2004.01.004

    Article  CAS  Google Scholar 

  • Liu G, Larson ED, Williams RH, Kreutz TG, Guo X (2010) Making Fischer—Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuel 25(1):415–437

    Article  Google Scholar 

  • Liu H, Shao Y, Li J (2011) A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC)—thermodynamic modelling studies. Biomass Bioenergy 35(9):3985–3994

    Article  CAS  Google Scholar 

  • Liu P, Georgiadis MC, Pistikopoulos EN (2013) An energy systems engineering approach for the design and operation of microgrids in residential applications. Chem Eng Res Des 91(10): 2054–2069. doi:10.1016/j.cherd.2013.08.016

    Article  CAS  Google Scholar 

  • Maghanki MM, Ghobadian B, Najafi G, Galogah RJ (2013) Micro combined heat and power (MCHP) technologies and applications. Renew Sustain Energy Rev 28:510–524

    Article  Google Scholar 

  • Mago PJ, Hueffed A, Chamra LM (2010) Analysis and optimization of the use of CHP–ORC systems for small commercial buildings. Energy Build 42(9):1491–1498. doi:10.1016/j.enbuild.2010.03.019

    Article  Google Scholar 

  • Mahlia TMI, Abdulmuin MZ, Alamsyah TMI, Mukhlishien D (2001) An alternative energy source from palm wastes industry for Malaysia and Indonesia. Energy Convers Manag 42(18): 2109–2118

    Article  CAS  Google Scholar 

  • Maizza V, Maizza A (2001) Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Appl Therm Eng 21(3):381–390. doi:10.1016/S1359-4311(00)00044-2

    Article  CAS  Google Scholar 

  • Mathiesen BV, Lund H (2009) Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. Renew Power Gener IET 3(2):190–204. doi:10.1049/iet-rpg:20080049

    Article  Google Scholar 

  • Nascimento MARD, Rodrigues LDO, Santos ECD, Gomes EEB, Dias FLG, Velásques EIG, Carrillo RAM (2013) Micro gas turbine engine: a review. 5:107–141. http://dx.doi.org/ 10.5772/54444

    Google Scholar 

  • Nguyen VM, Doherty PS, Riffat SB (2001) Development of a prototype low-temperature Rankine cycle electricity generation system. Appl Therm Eng 21(2):169–181. doi:10.1016/S1359-4311 (00)00052-1

  • Onovwiona HI, Ismet Ugursal V, Fung AS (2007) Modeling of internal combustion engine based cogeneration systems for residential applications. Appl Therm Eng 27(5–6):848–861

    Article  CAS  Google Scholar 

  • Parikh JCS, Ghosal G (2007) A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86(12):1710–1719

    Article  CAS  Google Scholar 

  • Possidente R, Roselli C, Sasso M, Sibilio S (2006) Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine. Energy Build 38(12):1417–1422. doi:10.1016/j.enbuild.2006.03.022

    Article  Google Scholar 

  • Prakobboon N, Vahdati M (2013) Review of the potential for co-firing of cassava rhizome for generating heat and power in cassava based bio-ethanol plant in Thailand. Int J Biomass Renew 2(2):14–22

    Google Scholar 

  • Prasara AJ, ÄŚuÄŤek L, Varbanov PS, Klemeš JJ (2012) Environmental and economic performances of different technologies for power generation from rice husks. Chem Eng 29:751–756

    Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJ (2006) Torrefaction of wood: Part 2. Analysis of products. J Anal Appl Pyrolysis 77(1):35–40

    Article  CAS  Google Scholar 

  • Qiu G (2012) Selection of working fluids for micro-CHP systems with ORC. Renew Energy 48:565–570

    Article  CAS  Google Scholar 

  • Qiu K, Hayden S (2009) Integrated micro-CHP systems for residential applications. In: Proceedings—6th International symposium on heating, ventilating and air conditioning, ISHVAC, vol 3, pp 1624–1631

    Google Scholar 

  • Qiu G, Liu H, Riffat S (2011) Expanders for micro-CHP systems with organic Rankine cycle. Appl Therm Eng 31(16):3301–3307

    Article  CAS  Google Scholar 

  • Qiu G, Shao Y, Li J, Liu H, Riffat SB (2012) Experimental investigation of a biomass-fired ORC-based micro-CHP for domestic applications. Fuel 96:374–382

    Article  CAS  Google Scholar 

  • Ren H, Gao W (2010) Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan. Energy Build 42(6):853–861. doi:10.1016/j.enbuild.2009.12.007

    Article  Google Scholar 

  • Rong A, Hakonen H, Lahdelma R (2009) A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems. Energy Convers Manag 50(4):1108–1115

    Article  Google Scholar 

  • Sadrul Islam AKM, Ahiduzzaman M (2012) Biomass energy: sustainable solution for greenhouse gas emission. AIP Conf Proc 1440(1):23–32. doi:10.1063/1.4704200

    Article  CAS  Google Scholar 

  • Sahlin J, Knutsson D, Ekvall T (2004) Effects of planned expansion of waste incineration in the Swedish district heating systems. Resour Conserv Recycling 41(4):279–292

    Article  Google Scholar 

  • Sandberg T, Bernotat K (2005) Potential for small-scale bio-fueled district heating and CHPS in Sweden. In: Silveira S (ed) Bioenergy—realizing the potential. Elsevier Science BV, Amsterdam, pp 113–124

    Google Scholar 

  • Shaneb OA, Taylor PC (2009) An evaluation of integrated fuel cell and energy storage systems for residential applications. In: Universities Power Engineering Conference (UPEC), 2009 Proceedings of the 44th international, 1–5, IEEE

    Google Scholar 

  • Sipilä K, Solantausta Y, Kurkela E (1993) Long-term cogeneration and biomass strategies for reducing CO2 emissions in Finland. Energy Convers Manag 34(9–11):1051–1058

    Article  Google Scholar 

  • Skytte K, Meibom P, Henriksen TC (2006) Electricity from biomass in the European union—with or without biomass import. Biomass Bioenergy 30(5):385–392. doi:10.1016/j.biombioe. 2005.11.016

  • Sommer K (2011) Micro-combined heat and power (Micro-CHP) appliances for one or two-family houses for more energy efficiency. REHVA J 6:30–33

    Google Scholar 

  • Taljan G, VerbiÄŤ G, Pantoš M, Sakulin M, Fickert L (2012) Optimal sizing of biomass-fired organic rankine cycle CHP system with heat storage. Renew Energy 41:29–38

    Article  CAS  Google Scholar 

  • Tchanche BF, Lambrinos G, Frangoudakis A, Papadakis G (2011) Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew Sustain Energy Rev 15(8):3963–3979

    Article  CAS  Google Scholar 

  • Thek G, Obernberger I (2004) Wood pellet production costs under Austrian and in comparison to Swedish framework conditions. Biomass Bioenergy 27(6):671–693

    Article  Google Scholar 

  • Thomas A, Bond A, Hiscock K (2013) A GIS based assessment of bioenergy potential in England within existing energy systems. Biomass Bioenergy 55:107–121

    Article  Google Scholar 

  • Touš M, Pavlas M, StehlĂ­k P, Popela P (2011) Effective biomass integration into existing combustion plant. Energy 36(8):4654–4662

    Article  Google Scholar 

  • Uemura Y, Omar WN, Tsutsui T, Yusup SB (2011) Torrefaction of oil palm wastes. Fuel 90(8):2585–2591. doi:10.1016/j.fuel.2011.03.021

    Article  CAS  Google Scholar 

  • Ulloa C, MĂ­guez JL, Porteiro J, EguĂ­a P, Cacabelos A (2013) Development of a transient model of a stirling-based CHP system. Energies 6(7):3115–3133

    Article  Google Scholar 

  • Van Dael M, Van Passel S, Pelkmans L, Guisson R, Reumermann P, Luzardo NM, Witters N, Broeze J (2013) A techno-economic evaluation of a biomass energy conversion park. Appl Energy 104:611–622. doi:10.1016/j.apenergy.2012.11.071

    Article  Google Scholar 

  • Van Der Linden, S, Romero, M (2009) Advanced heat recovery technology improves efficiency and reduces emissions. In: Proceedings—ASME International Mechanical Engineering Congress and Exposition, vol 7, pp 21–27

    Google Scholar 

  • Vanneste J, Van Gerven T, Vander Putten E, Van der Bruggen B, Helsen L (2011) Energetic valorization of wood waste: Estimation of the reduction in CO2 emissions. Sci Total Environ 409(19):3595–3602

    Article  CAS  PubMed  Google Scholar 

  • Veldman E, Gibescu M, Slootweg H, Kling WL (2011) Impact of electrification of residential heating on loading of distribution networks. 1–7. doi:10.1109/PTC.2011.6019179

  • Veringa H, Alderliesten P (2006) Advanced techniques for generation of energy from biomass and waste. Paper presented at the TT Franco (Red.), Industrial perspectives for bioethanol. Proceedings of the UNIEMP workshop innovation on biofuels. UNIEMP, Sao Paulo, p 1–24

    Google Scholar 

  • Vincenzo L, Mads Pagh N, Søren KK (2013) Ejector design and performance evaluation for recirculation of anode gas in a micro combined heat and power systems based on solid oxide fuel cell. Appl Therm Eng 54(1):26–34

    Google Scholar 

  • Wang C, Wu Z, Tang C, Li L, Wang D (2013) The effect of nickel content on the hydrodeoxygenation of 4-methylphenol over unsupported NiMoW sulfide catalysts. Catal Commun 32:76–80

    Article  Google Scholar 

  • Wood SR, Rowley PN (2011) A techno-economic analysis of small-scale, biomass-fuelled combined heat and power for community housing. Biomass Bioenergy 35(9):3849–3858

    Article  Google Scholar 

  • Wright A (2008) What is the relationship between built form and energy use in dwellings? Energy Policy 36(12):4544–4547

    Article  Google Scholar 

  • Wu J, Lin W, Liu X, Sun Y, Peng X (2013) A review of supply chain operation mode of agricultural straw: biomass and biomass industry in Heilongjiang province, China. Int J Biomass Renew 2(2):7–13

    Google Scholar 

  • Xu H, Dang Z, Bai B-F (2012) Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell. Appl Therm Eng 50(1):1101–1110. doi:10.1016/j.applthermaleng. 2012.07.004

  • Yee A, Morrison SJ, Idriss H (2000) A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal 191(1):30–45. doi:10.1006/jcat.1999.2765

    Article  CAS  Google Scholar 

  • Yong TLK, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35(11):5692–5701

    Article  Google Scholar 

  • Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresour Technol 134: 73–80. doi:10.1016/j.biortech.2013.02.039

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujan Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chowdhury, S., Yasir, M., Uemura, Y., Mohamed, N.M., Uddin, A., Yanagida, T. (2014). Application of Micro- or Small-Scale Biomass-Derived Fuel System for Power Generation. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_17

Download citation

Publish with us

Policies and ethics