Skip to main content

Probing Dirac Fermions in Graphene by Scanning Tunneling Microscopy and Spectroscopy

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Graphene is a two dimensional system which can be studied using surface probe techniques such as scanning tunneling microscopy and spectroscopy. Combining the two, one can learn about the surface morphology as well as about its electronic properties. In this chapter we present a brief review of experimental results obtained on graphene supported on substrates with varying degrees of disorder. In the first part we focus on the electronic properties of single layer graphene without a magnetic field as well as in the presence of a perpendicular magnetic field. The second part focuses on twisted graphene stacks and the effects of rotating away from the equilibrium Bernal stacking on the electronic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57–61 (1982)

    ADS  Google Scholar 

  2. J. Tersoff, D.R. Hamann, Theory of the scanning tunneling microscope. Phys. Rev. B 31(2), 805–813 (1985)

    ADS  Google Scholar 

  3. J. Bardeen, Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6(2), 57–59 (1961)

    ADS  Google Scholar 

  4. G. Li, A. Luican, E.Y. Andrei, Electronic states on the surface of graphite. Physica B, Condens. Matter 404(18), 2673–2677 (2009)

    ADS  Google Scholar 

  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)

    ADS  Google Scholar 

  6. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. Von Klitzing, A. Yacoby, Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4(2), 144–148 (2007)

    Google Scholar 

  7. Y. Zhang, V.W. Brar, C. Girit, A. Zettl, M.F. Crommie, Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5(10), 722–726 (2009)

    Google Scholar 

  8. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008)

    Google Scholar 

  9. A. Luican, G. Li, E.Y. Andrei, Quantized Landau level spectrum and its density dependence in graphene. Phys. Rev. B 83, 041405 (2011)

    ADS  Google Scholar 

  10. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    ADS  Google Scholar 

  11. C.R. Dean, A.F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, K.L. Shepard, Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7(9), 693–696 (2011)

    Google Scholar 

  12. C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz, Ultraflat graphene. Nature 462(7271), 339–341 (2009)

    ADS  Google Scholar 

  13. V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte, M. Schmidt, R. Rückamp, M.C. Lemme, M. Morgenstern, Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Phys. Rev. Lett. 102(7), 076102 (2009)

    ADS  Google Scholar 

  14. A. Luican, G. Li, E.Y. Andrei, Scanning tunneling microscopy and spectroscopy of graphene layers on graphite. Solid State Commun. 149(27–28), 1151–1156 (2009)

    ADS  Google Scholar 

  15. P. Neugebauer, M. Orlita, C. Faugeras, A.L. Barra, M. Potemski, How perfect can graphene be? Phys. Rev. Lett. 103(13), 136403 (2009)

    ADS  Google Scholar 

  16. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, N. Phillip, et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)

    Google Scholar 

  17. A.J. Van Bommel, J.E. Crombeen, A. Van Tooren, LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci. 48(2), 463–472 (1975)

    ADS  Google Scholar 

  18. I. Forbeaux, J.-M. Themlin, J.-M. Debever, Heteroepitaxial graphite on 6h-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B 58, 16396–16406 (1998)

    ADS  Google Scholar 

  19. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    ADS  Google Scholar 

  20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    ADS  Google Scholar 

  21. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)

    ADS  Google Scholar 

  22. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443–449 (2011)

    ADS  Google Scholar 

  23. S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007)

    ADS  Google Scholar 

  24. P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406–411 (2008)

    ADS  Google Scholar 

  25. A.T. N’Diaye, S. Bleikamp, P.J. Feibelman, T. Michely, Two-dimensional Ir cluster lattice on a graphene Moiré on Ir(111). Phys. Rev. Lett. 97, 215501 (2006)

    ADS  Google Scholar 

  26. E. Loginova, S. Nie, K. Thürmer, N.C. Bartelt, K.F. McCarty, Defects of graphene on Ir(111): rotational domains and ridges. Phys. Rev. B 80, 085430 (2009)

    ADS  Google Scholar 

  27. P. Sutter, J.T. Sadowski, E. Sutter, Graphene on Pt(111): growth and substrate interaction. Phys. Rev. B 80, 245411 (2009)

    ADS  Google Scholar 

  28. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6(11), 858–861 (2007)

    ADS  Google Scholar 

  29. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17(22), 1133–1136 (1966)

    ADS  Google Scholar 

  30. M.I. Katsnelson, A.K. Geim, Electron scattering on microscopic corrugations in graphene. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 366(1863), 195 (2008)

    ADS  Google Scholar 

  31. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    ADS  Google Scholar 

  32. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10(4), 282–285 (2011)

    ADS  Google Scholar 

  33. R. Decker, Y. Wang, V.W. Brar, W. Regan, H.Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M.F. Crommie, Local electronic properties of graphene on a bn substrate via scanning tunneling microscopy. Nano Lett. 11(6), 2291–2295 (2011)

    ADS  Google Scholar 

  34. G. Li, A. Luican, E.Y. Andrei, Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102(17), 176804 (2009)

    ADS  Google Scholar 

  35. A. Deshpande, W. Bao, F. Miao, C.N. Lau, B.J. LeRoy, Spatially resolved spectroscopy of monolayer graphene on SiO2. Phys. Rev. B 79(20), 205411 (2009)

    ADS  Google Scholar 

  36. S. Jung, G.M. Rutter, N.N. Klimov, D.B. Newell, I. Calizo, A.R. Hight-Walker, N.B. Zhitenev, J.A. Stroscio, Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 7(3), 245–251 (2011)

    Google Scholar 

  37. E. Stolyarova, K.T. Rim, S. Ryu, J. Maultzsch, P. Kim, L.E. Brus, T.F. Heinz, M.S. Hybertsen, G.W. Flynn, High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA 104(22), 9209 (2007)

    ADS  Google Scholar 

  38. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)

    ADS  Google Scholar 

  39. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    ADS  Google Scholar 

  40. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    ADS  Google Scholar 

  41. V. Geringer, D. Subramaniam, A.K. Michel, B. Szafranek, D. Schall, A. Georgi, T. Mashoff, D. Neumaier, M. Liebmann, M. Morgenstern, Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene. Appl. Phys. Lett. 96, 082114 (2010)

    ADS  Google Scholar 

  42. Y. Zhang, V.W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl, M.F. Crommie, Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat. Phys. 4(8), 627–630 (2008)

    Google Scholar 

  43. M.L. Teague, A.P. Lai, J. Velasco, C.R. Hughes, A.D. Beyer, M.W. Bockrath, C.N. Lau, N.C. Yeh, Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. Nano Lett. 9(7), 2542–2546 (2009)

    ADS  Google Scholar 

  44. L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim, H. Zhou, C. Gutiérrez, S.P. Chockalingam, C.J. Arguello, L. Palova, D. Nordlund, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, P. Kim, A. Pinczuk, G.W. Flynn, A.N. Pasupathy, Visualizing individual nitrogen dopants in monolayer graphene. Science 333(6045), 999–1003 (2011)

    ADS  Google Scholar 

  45. G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Scattering and interference in epitaxial graphene. Science 317(5835), 219–222 (2007)

    ADS  Google Scholar 

  46. I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Magaud, K. Kern, J.Y. Veuillen, Quasiparticle chirality in epitaxial graphene probed at the nanometer scale. Phys. Rev. Lett. 101(20), 206802 (2008)

    ADS  Google Scholar 

  47. E.Y. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates, vol. 19 (Kluwer Academic, Dordrecht, 1997)

    Google Scholar 

  48. J.H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, Cambridge, 1998)

    Google Scholar 

  49. J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 272–279 (1958)

    ADS  Google Scholar 

  50. G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53(26), 2449–2452 (1984)

    MathSciNet  ADS  Google Scholar 

  51. R. Rammal, Landau level spectrum of Bloch electrons in a honeycomb lattice. J. Phys. 46(8), 1345–1354 (1985)

    MathSciNet  Google Scholar 

  52. I. Rabi, Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys. A, Hadrons Nucl. 49(7), 507–511 (1928)

    MATH  Google Scholar 

  53. G. Li, E.Y. Andrei, Observation of Landau levels of Dirac fermions in graphite. Nat. Phys. 3(9), 623–627 (2007)

    Google Scholar 

  54. T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, H. Fukuyama, STS observations of Landau levels at graphite surfaces. Phys. Rev. Lett. 94, 226403 (2005)

    ADS  Google Scholar 

  55. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R.A. Römer, R. Wiesendanger, M. Morgenstern, Quantum Hall transition in real space: from localized to extended states. Phys. Rev. Lett. 101, 256802 (2008)

    ADS  Google Scholar 

  56. J.M. Pereira Jr, F.M. Peeters, P. Vasilopoulos, Landau levels and oscillator strength in a biased bilayer of graphene. Phys. Rev. B 76(11), 115419 (2007)

    ADS  Google Scholar 

  57. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. De Heer, et al., Observing the quantization of zero mass carriers in graphene. Science 324(5929), 924 (2009)

    ADS  Google Scholar 

  58. N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H.C. Neto, M.F. Crommie, Strain-induced pseudomagnetic fields greater than 300 tesla in graphene nanobubbles. Science 329(5991), 544–547 (2010)

    ADS  Google Scholar 

  59. P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.F. Jia, J. Wang, Y. Wang, B.F. Zhu, X. Chen, et al., Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 105(7), 76801 (2010)

    ADS  Google Scholar 

  60. T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, T. Sasagawa, Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305 (2010)

    ADS  Google Scholar 

  61. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98(19), 197403 (2007)

    ADS  Google Scholar 

  62. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Phys. Rev. B 76, 081406 (2007)

    ADS  Google Scholar 

  63. M. Sadowski, G. Martinez, M. Potemski, C. Berger, W. De Heer, Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97(26), 266405 (2006)

    ADS  Google Scholar 

  64. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, K. Von Klitzing, J. Smet, A. Yacoby, The nature of localization in graphene under quantum Hall conditions. Nat. Phys. 5(9), 669–674 (2009)

    Google Scholar 

  65. L.A. Ponomarenko, R. Yang, R.V. Gorbachev, P. Blake, A.S. Mayorov, K.S. Novoselov, M.I. Katsnelson, A.K. Geim, Density of states and zero Landau level probed through capacitance of graphene. Phys. Rev. Lett. 105(13), 136801 (2010)

    ADS  Google Scholar 

  66. C.-H. Park, F. Giustino, M.L. Cohen, S.G. Louie, Velocity renormalization and carrier lifetime in graphene from the electron-phonon interaction. Phys. Rev. Lett. 99, 086804 (2007)

    ADS  Google Scholar 

  67. C.H. Park, F. Giustino, M.L. Cohen, S.G. Louie, Electron-phonon interactions in graphene, bilayer graphene, and graphite. Nano Lett. 8(12), 4229–4233 (2008)

    ADS  Google Scholar 

  68. J.-A. Yan, W.Y. Ruan, M.Y. Chou, Electron-phonon interactions for optical-phonon modes in few-layer graphene: first-principles calculations. Phys. Rev. B 79, 115443 (2009)

    ADS  Google Scholar 

  69. J. Gonzalez, F. Guinea, M. Vozmediano, Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Phys. Rev. B 59(4), 2474–2477 (1999)

    ADS  Google Scholar 

  70. X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462(7270), 192–195 (2009)

    ADS  Google Scholar 

  71. K.I. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer, P. Kim, Observation of the fractional quantum Hall effect in graphene. Nature 462(7270), 196–199 (2009)

    ADS  Google Scholar 

  72. Y.J. Song, A.F. Otte, Y. Kuk, Y. Hu, D.B. Torrance, et al., High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467(7312), 185–189 (2010)

    ADS  Google Scholar 

  73. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    ADS  Google Scholar 

  74. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    ADS  Google Scholar 

  75. P. Balk, The Si-SiO2 system, in Materials Science Monographs, vol. 32 (1988)

    Google Scholar 

  76. Y.B. Park, S.W. Rhee, Microstructure and interfacial states of silicon dioxide film grown by low temperature remote plasma enhanced chemical vapor deposition. J. Appl. Phys. 86, 1346 (1999)

    ADS  Google Scholar 

  77. Y.B. Park, S.W. Rhee, Effects of chlorine addition on the silicon dioxide properties deposited with remote plasma enhanced chemical vapor deposition at low temperatures. Appl. Phys. Lett. 66, 3477 (1995)

    ADS  Google Scholar 

  78. J.C. Alonso, A. Ortiz, C. Falcony, Low temperature SiO2 films deposited by plasma enhanced techniques. Vacuum 43(8), 843–847 (1992)

    Google Scholar 

  79. T. Ando, Y. Uemura, Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields. J. Phys. Soc. Jpn. 36, 959 (1974)

    ADS  Google Scholar 

  80. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)

    ADS  Google Scholar 

  81. W. Zhu, Q.W. Shi, X.R. Wang, J. Chen, J.L. Yang, J.G. Hou, Shape of disorder-broadened Landau subbands in graphene. Phys. Rev. Lett. 102, 056803 (2009)

    ADS  Google Scholar 

  82. O.E. Dial, R.C. Ashoori, L.N. Pfeiffer, K.W. West, High-resolution spectroscopy of two-dimensional electron systems. Nature 448(7150), 176–179 (2007)

    ADS  Google Scholar 

  83. M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, A.H. MacDonald, Graphene: a pseudochiral Fermi liquid. Solid State Commun. 143(1–2), 58–62 (2007)

    ADS  Google Scholar 

  84. D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novolselov, A.K. Geim, F. Guinea, Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011)

    Google Scholar 

  85. A. Luican, G. Li, E.Y. Andrei et al., Visualizing the effect of isolated Coulomb impurities in the quantum Hall regime in graphene. arXiv:1311.0064

  86. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    ADS  Google Scholar 

  87. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, M. Kindermann et al., Real-space mapping of magnetically quantized graphene states. Nat. Phys. 6(10), 811–817 (2010)

    Google Scholar 

  88. G. Li, A. Luican, E.Y. Andrei, Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample. Rev. Sci. Instrum. 82, 073701 (2011)

    ADS  Google Scholar 

  89. G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, E.Y. Andrei, Evolution of Landau levels into edge states in graphene. Nat. Commun. 4 (2013)

    Google Scholar 

  90. L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    ADS  Google Scholar 

  91. Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)

    ADS  Google Scholar 

  92. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie et al., Graphene at the edge: stability and dynamics. Science 323(5922), 1705 (2009)

    ADS  Google Scholar 

  93. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65(7), 1920–1923 (1996)

    ADS  Google Scholar 

  94. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73(8), 085421 (2006)

    ADS  Google Scholar 

  95. C. Tao, L. Jiao, O.V. Yazyev, Y.C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie et al., Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 7, 616–620 (2011)

    Google Scholar 

  96. D.A. Abanin, P.A. Lee, L.S. Levitov, Charge and spin transport at the quantum Hall edge of graphene. Solid State Commun. 143(1–2), 77–85 (2007)

    ADS  Google Scholar 

  97. D.A. Abanin, P.A. Lee, L.S. Levitov, Spin-filtered edge states and quantum Hall effect in graphene. Phys. Rev. Lett. 96(17), 176803 (2006)

    ADS  Google Scholar 

  98. M. Arikawa, Y. Hatsugai, H. Aoki, Edge states in graphene in magnetic fields: a specialty of the edge mode embedded in the n=0 Landau band. Phys. Rev. B 78, 205401 (2008)

    ADS  Google Scholar 

  99. V.M. Pereira, A.H. Castro Neto, Strain engineering of graphene electronic structure. Phys. Rev. Lett. 103(4), 46801 (2009)

    ADS  Google Scholar 

  100. F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2009)

    Google Scholar 

  101. E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)

    ADS  Google Scholar 

  102. F. Guinea, A.H. Castro Neto, N.M.R. Peres, Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)

    ADS  Google Scholar 

  103. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)

    ADS  Google Scholar 

  104. R.T. Weitz, M.T. Allen, B.E. Feldman, J. Martin, A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330(6005), 812–816 (2010)

    ADS  Google Scholar 

  105. A.S. Mayorov, D.C. Elias, M. Mucha-Kruczynski, R.V. Gorbachev, T. Tudorovskiy, A. Zhukov, S.V. Morozov, M.I. Katsnelson, V.I. Falko, A.K. Geim, K.S. Novoselov, Interaction-driven spectrum reconstruction in bilayer graphene. Science 333(6044), 860–863 (2011)

    ADS  Google Scholar 

  106. B.E. Feldman, J. Martin, A. Yacoby, Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nat. Phys. 5(12), 889–893 (2009)

    Google Scholar 

  107. A. Deshpande, W. Bao, Z. Zhao, C.N. Lau, B. LeRoy, Mapping the Dirac point in gated bilayer graphene. Appl. Phys. Lett. 95, 243502 (2009)

    ADS  Google Scholar 

  108. G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7, 649–655 (2011)

    Google Scholar 

  109. Z.Y. Rong, P. Kuiper, Electronic effects in scanning tunneling microscopy: Moiré pattern on a graphite surface. Phys. Rev. B 48, 17427–17431 (1993)

    ADS  Google Scholar 

  110. J. Xhie, K. Sattler, M. Ge, N. Venkateswaran, Giant and supergiant lattices on graphite. Phys. Rev. B 47, 15835–15841 (1993)

    ADS  Google Scholar 

  111. K. Kobayashi, Moiré pattern in scanning tunneling microscopy of monolayer graphite. Phys. Rev. B 50, 4749–4755 (1994)

    ADS  Google Scholar 

  112. W.T. Pong, C. Durkan, A review and outlook for an anomaly of scanning tunnelling microscopy (STM): superlattices on graphite. J. Phys. D, Appl. Phys. 38, R329 (2005)

    ADS  Google Scholar 

  113. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007)

    ADS  Google Scholar 

  114. G. Trambly de Laissardie‘re, D. Mayou, L. Magaud, Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10(3), 804–808 (2010)

    ADS  Google Scholar 

  115. E.J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010)

    ADS  Google Scholar 

  116. R. Bistritzer, A.H. MacDonald, Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 108(30), 12233–12237 (2011)

    Google Scholar 

  117. S. Shallcross, S. Sharma, E. Kandelaki, O.A. Pankratov, Electronic structure of turbostratic graphene. Phys. Rev. B 81, 165105 (2010)

    ADS  Google Scholar 

  118. S. Shallcross, S. Sharma, O.A. Pankratov, Quantum interference at the twist boundary in graphene. Phys. Rev. Lett. 101, 056803 (2008)

    ADS  Google Scholar 

  119. A. Luican, G. Li, A. Reina, J. Kong, R.R. Nair, K.S. Novoselov, A.K. Geim, E.Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011)

    ADS  Google Scholar 

  120. L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89(6), 1189 (1953)

    MATH  ADS  Google Scholar 

  121. M. Fleck, A.M. Oleś, L. Hedin, Magnetic phases near the Van Hove singularity in s- and d-band Hubbard models. Phys. Rev. B 56, 3159–3166 (1997)

    ADS  Google Scholar 

  122. J. González, Kohn-Luttinger superconductivity in graphene. Phys. Rev. B 78, 205431 (2008)

    ADS  Google Scholar 

  123. T.M. Rice, G.K. Scott, New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 35, 120–123 (1975)

    ADS  Google Scholar 

  124. J. Hicks, M. Sprinkle, K. Shepperd, F. Wang, A. Tejeda, A. Taleb-Ibrahimi, F. Bertran, P. Le Fèvre, W.A. de Heer, C. Berger, E.H. Conrad, Symmetry breaking in commensurate graphene rotational stacking: comparison of theory and experiment. Phys. Rev. B 83, 205403 (2011)

    ADS  Google Scholar 

  125. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First, J.A. Stroscio, Structural analysis of multilayer graphene via atomic Moiré interferometry. Phys. Rev. B 81, 125427 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Li, I. Skachko and A.M.B. Goncalves for help with data and figures. Funding was provided by NSF-DMR-090671, DOE DE-FG02-99ER45742, and the Alcatel-Lucent Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Y. Andrei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luican-Mayer, A., Andrei, E.Y. (2014). Probing Dirac Fermions in Graphene by Scanning Tunneling Microscopy and Spectroscopy. In: Aoki, H., S. Dresselhaus, M. (eds) Physics of Graphene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02633-6_2

Download citation

Publish with us

Policies and ethics