Skip to main content

Improvement of Environmental and Energy Efficiency of Marine Engines by Utilizing the Ecological Recirculation of Gas Heat in an Absorption Chiller

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Technical regulation is carried out based on the real possibility of ensuring the required level of environmental friendliness of harmful emissions. Requirements for the environmental safety of ships are developed by the International Marine Organization (IMO). The requirements of IMO standards, applications, and protocols of the MARPOL 73/78 convention regulate technical, organizational, and legal environmental protection issues at sea. Their implementation often leads to a reduction of the economic and energy performance of marine diesel engines. However, the main difficulties in ensuring the environmental safety of internal combustion engines are associated with the selectivity of the components of the exhaust gases system. The innovative scheme of Exhaust Gas Recirculation (EGR) system with using the heat of recirculation gas by absorption chiller (ACh) for cooling the air at the intake of main ship engine is proposed. The effect of using the heat of recirculation gas for cooling engine intake air is analyzed considering the changing climatic conditions on the vessel’s route line. The results of calculations have shown reducing the emissions of harmful substances (NOX by 26 to 39%; SOX by 9 to 14%) when the engine is running with recirculation of gas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pham, V.V.: Advanced technology solutions for treatment and control noxious emission of large marine diesel engines: a brief review. J. Mech. Eng. Res. Dev. 42(5), 21–27 (2019)

    MathSciNet  Google Scholar 

  2. Radchenko, R., Pyrysunko, M., Radchenko, A., Andreev, A., Kornienko, V.: Ship engine intake air cooling by ejector chiller using recirculation gas heat. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Grabchenko, A., Pavlenko, I., Edl, M., Kuric, I., Dasic, P. (eds.) InterPartner 2020. LNME, pp. 734–743. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_71

    Chapter  Google Scholar 

  3. Thirumala Sai Kumar, J., Karthikeya Sharma, T., Madhu Murthy, K., Amba Prasad Rao, G.: Effect of reformed EGR on the performance and emissions of a diesel engine: A numerical study. Alexandria Eng. J. 57, 517–525 (2018)

    Google Scholar 

  4. Trushliakov, E., Radchenko, M., Bohdal, T., Radchenko, R., Kantor, S.: An innovative air conditioning system for changeable heat loads. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pp. 616–625. Springer, Cham (2020)

    Google Scholar 

  5. Thangaraja, J., Kannan, C.: Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels-a review. Appl. Energy 180, 169–184 (2016)

    Article  Google Scholar 

  6. Radchenko, N., Radchenko, A., Tsoy, A., Mikielewicz, D., Kantor, S., Tkachenko, V.: Improving the efficiency of railway conditioners in actual climatic conditions of operation. In: AIP Conference Proceedings 2285, no. 030072 (2020). https://doi.org/10.1063/5.0026789020N

  7. Radchenko, A., Stachel, A., Forduy, S., Portnoi, B., Rizun, O.: Analysis of the efficiency of engine inlet air chilling unit with cooling towers. In: Ivanov, V., et al. (eds.) DSMIE 2020. LNME, pp. 322–331. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_31

  8. Grünenwald, B., Knödler, W., Saumweber, C.: A methodology for evaluation of charge air coolers for low pressure EGR systems with respect to corrosion. Veh. Therm. Manage. Syst. Conf. Exhib. 10, 57–67 (2011)

    Google Scholar 

  9. Hadjab, R., Kadja, M.: Computational fluid dynamics simulation of heat transfer performance of exhaust gas recirculation coolers for heavy-duty diesel engines. Therm. Sci. 22(6B), 2733–2745 (2018)

    Article  Google Scholar 

  10. MAN Diesel, Turbo. http://marine.man.eu/docs/librariesprovider6/technical-papers/tier-iii-two-stroke-technology.pdf?sfvrsn=18. Accessed 10 April 2020

  11. Ivanov, V., Pavlenko, I., Trojanowska, J., Zuban, Y., Samokhvalov, D., Bun, P.: Using the augmented reality for training engineering students. In: 4th International Conference of the Virtual and Augmented Reality in Education, VARE 2018, pp. 57–64 (2018)

    Google Scholar 

  12. Bun, P., Trojanowska, J., Ivanov, V., Pavlenko, I.: The use of virtual reality training application to increase the effectiveness of workshops in the field of lean manufacturing. In: 4th International Conference of the Virtual and Augmented Reality in Education, VARE 2018, pp. 65–71 (2018)

    Google Scholar 

  13. Kumar, J. Thirumala, S., et al.: Effect of reformed EGR on the performance and emissions of a diesel engine: A numerical study. Alexandria Eng. J. 57, 517–525 (2018)

    Google Scholar 

  14. Radchenko, A., Trushliakov, E., Kosowski, K., Mikielewicz, D., Radchenko, M.: Innovative turbine intake air cooling systems and their rational designing. Energies 13(23), 6201 (2020). https://doi.org/10.3390/en13236201

    Article  Google Scholar 

  15. Nagendra, S., Santosh Kumar, B., Kiran, A.V.N.S., Ramanjaneyalu, C., Nagamani, K.: Quantification of execution and emission efficiency of a fueled diesel engine. J. Eng. Sci. 7(1), G15–G20 (2020). https://doi.org/10.21272/jes.2020.7(1).g3

  16. Cherednichenko, O., Mitienkova, V.: Analysis of the impact of thermochemical recuperation of waste heat on the energy efficiency of gas carriers marine. Sci. Appl. 19, 72–82 (2020)

    Google Scholar 

  17. Trushliakov, E., Radchenko, A., Forduy, S., Zubarev, A., Hrych, A.: Increasing the operation efficiency of air conditioning system for integrated power plant on the base of its monitoring. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). Advances in Intelligent Systems and Computing, vol. 1113, pp. 351–360. Springer, Cham (2020)

    Chapter  Google Scholar 

  18. Cherednichenko, O., Tkach, M., Dotsenko, S.: The usage of a waste heat recovery metal-hydride unit of continuous operation in the maritime energy. In: 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). pp. 510–513 (2019)

    Google Scholar 

  19. Trushliakov, E., Radchenko, A., Radchenko, M., Kantor, S., Zielikov, O.: The efficiency of refrigeration capacity regulation in the ambient air conditioning systems. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing III (DSMIE-2020). Lecture Notes in Mechanical Engineering, pp. 343–353. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_33

  20. Radchenko, A., Mikielewicz, D., Forduy, S., Radchenko, M., Zubarev, A.: Monitoring the fuel efficiency of gas engine in integrated energy system. In: Nechyporuk, M., et al. (eds.) Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). Advances in Intelligent Systems and Computing, vol. 1113, pp. 361–370. Springer, Cham (2020)

    Chapter  Google Scholar 

  21. Cherednichenko, O., Serbin, S., Dzida, M.: Application of thermo-chemical technologies for converging of associated gas in diesel-gas turbine installations for oil and gas floating units. Polish Maritime Res. 26(3), 181–187 (2019)

    Article  Google Scholar 

  22. Bohdal, L., Kukielka, L., Świłło, S., Radchenko, A., Kułakowska, A.: Modelling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH and vision-based methods. In: AIP Conference Proceedings 2078, no. 020060 (2019)

    Google Scholar 

  23. Radchenko, M., Radchenko, R., Tkachenko, V., Kantor, S., Smolyanoy, E.: Increasing the operation efficiency of railway air conditioning system on the base of its simulation along the route line. In: Nechyporuk, M., et al. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 461–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_39

  24. Konovalov, D., Kobalava, H., Radchenko, M., Scurtu, I.C., Radchenko, R.: Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, E3S Web of Conferences, vol. 180, p. 0101231 (2020). https://doi.org/10.1051/e3sconf/202018001012

  25. Shu, G., Liang, Y., Wei, H., Tian, H., Zhao, J., Liu, L.: A review of waste heat recovery on two-stroke IC engine aboard ships. Renew. Sustain. Energy Rev. 19, 385–401 (2013)

    Article  Google Scholar 

  26. Bohdal, L., Kukielka, L., Radchenko, A., Patyk, R., Kułakowski, M., Chodór, J.: Modelling of guillotining process of grain oriented silicon steel using FEM. In: AIP Conference Proceedings 2078, no. 020080 (2019)

    Google Scholar 

  27. Bohdal, L., Kukielka, L., Legutko, S., Patyk, R., Radchenko, A.M.: Modeling and experimental analysis of shear-slitting of AA6111-T4 aluminum alloy sheet. Materials 13(14), 3175 (2020). https://doi.org/10.3390/ma13143175

  28. Radchenko, A., Scurtu, I.-C., Radchenko, M., Forduy, S., Zubarev, A.: Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system. Therm. Sci. 00, 344 (2020)

    Article  Google Scholar 

  29. De Serio, D., de Oliveira, A., Sodré, J. R.: Application of an EGR system in a direct injection diesel engine to reduce NOx emissions. J. Phys. Conf. Ser. 745(3) (2016)

    Google Scholar 

  30. Kornienko, V., Radchenko, M., Radchenko, R., Konovalov, D., Andreev, A., Pyrysunko, M.: Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of water-fuel emulsions. Therm. Sci. 25(1 Part B), 791–800 (2021). https://doi.org/10.2298/TSCI200116154K

  31. Dąbrowski, P., Klugmann, M., Mikielewicz, D.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38, 135–148 (2017)

    Article  Google Scholar 

  32. Nogueira, E.: Thermal performance in heat exchangers by the irreversibility, effectiveness, and efficiency concepts using nanofluids. J. Eng. Sci. 7(2), F1–F7 (2020). https://doi.org/10.21272/jes.2020.7(2).f1

    Article  Google Scholar 

  33. Radchenko, A., Trushliakov, E., Tkachenko, V., Portnoi, B., Prjadko, O.: Improvement of the refrigeration capacity utilizing for the ambient air conditioning system. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 714–723. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_69

  34. Kumar, R., Singh, G., Mikielewicz, D.: Numerical study on mitigation of flow maldistribution in parallel microchannel heat sink: channels variable width versus variable height approach. J. Electron. Packag. 141, 21009–21011 (2019)

    Article  Google Scholar 

  35. Dąbrowski, P., Klugmann, M., Mikielewicz, D.: Channel blockage and flow maldistribution during unsteady flow in a model microchannel plate heat exchanger. J. Appl. Fluid Mech. 12, 1023–1035 (2019)

    Article  Google Scholar 

  36. Radchenko, M., Mikielewicz, D., Tkachenko, V., Klugmann, M., Andreev, A.: Enhancement of the operation efficiency of the transport air conditioning system. In: Ivanov, V., et al. (eds.) DSMIE 2020. LNME, pp. 332–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_32

  37. Butrymowicz, D., Gagan, J., Śmierciew, K., Łukaszuk, M., Dudar, A., Pawluczuk, A., Łapiński, A., Kuryłowicz, A.: Investigations of prototype ejection refrigeration system driven by low grade heat. In: HTRSE-2018, E3S Web of Conferences 70, 03002 (2018)

    Google Scholar 

  38. MAN Diesel Turbo.: CEAS Engine Calculations. https://marine.man-es.com/two-stroke/ceas. Accessed 22 June 2019

  39. Ochowiak, M., Wlodarczak, S., Pavlenko, I., Janecki, D., Krupinska, A., Markowska, M.: Study on interfacial surface in modified spray tower. processes 7(8), 532 (2019). https://doi.org/10.3390/pr7080532

  40. Liaposhchenko, O., Pavlenko, I., Ivanov, V., Demianenko, M., Starynskyi, O., Kuric, I., Khukhryanskiy, O.: Improvement of parameters for the multi-functional oil-gas separator of ‘heater-treater’ type. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 2019, pp. 66–71 (2019). https://doi.org/10.1109/IEA.2019.8715203

  41. Ship, B.: https://shipandbunker.com/prices#VLSFO. Accessed 10 April 2020

  42. Onda, S.p.A.: https://www.onda-it.com/eng/products/shell-and-tube-heat-exchangers/dry-expansions-evaporators-mpe. Accessed 10 April 2020

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radchenko, R., Pyrysunko, M., Kornienko, V., Andreev, A., Hrych, A. (2022). Improvement of Environmental and Energy Efficiency of Marine Engines by Utilizing the Ecological Recirculation of Gas Heat in an Absorption Chiller. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-91327-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91327-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91326-7

  • Online ISBN: 978-3-030-91327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics